
Tree Decomposition:

A Feasibility Study

Diplomarbeit

von Hein Röhrig

September 1998

Angefertigt nach einem Thema von Herrn Prof. Dr. Torben Hagerup am
Max-Planck-Institut für Informatik in Saarbrücken

Hiermit erkläre ich, daß ich diese Arbeit selbständig verfaßt und keine an-
deren als die angegebenen Quellen und Hilfsmittel verwendet habe.

Saarbrücken, den 23. September 1998 ...
Hein Röhrig

2

Abstract

Graphs of small treewidth resemble a tree in a certain (precise) sense. Many
computationally hard graph problems can be solved efficiently on graphs of
small treewidth using a “tree decomposition,” which represents the construc-
tive aspect of treewidth. However, computing minimum-width tree decompo-
sitions is NP-hard in general, but for fixed treewidth, there exist algorithms
with polynomial running time.

In order to evaluate the practical usability of tree-decomposition algo-
rithms for graphs of arbitrary treewidth, we have implemented several fun-
damental algorithms related to computing tree decompositions. We present
the theory behind solving graph problems using tree decompositions and
show how it can be applied in practice to compute “path decompositions.”
Then we give a survey of the tree-decomposition algorithms considered and
discuss their practical value on the basis of benchmarks.

Test graphs were produced using a suite of graph-generating programs
that we developed as part of this thesis. Our experiments indicate that the
algorithms for graphs of unrestricted treewidth are not viable for input graphs
with treewidth beyond the scope of present special-purpose algorithms, which
exist for treewidth up to four.

Acknowledgments

I would like to thank Torben Hagerup for introducing me to the subject of
this thesis, for many helpful discussions and valuable advice. I am indebted
to Volker Priebe and Rudolf Janz for their comments on drafts of the work;
Bernd Färber from the Rechnerbetriebsgruppe of the Max-Planck-Institut
did me a great favor in allowing me to use the new Starfire computer of
MPII before it was opened to the public.

3

Contents

1 Introduction 6

2 Using Tree Decompositions 14

2.1 Preliminaries . 14

2.2 The Generic Tree-Automaton Technique 19

2.3 A Recipe . 24

2.4 The Implementation . 26

3 Finding Path Decompositions 29

3.1 Applications of Path Decompositions 29

3.2 Interfacing to the Tree-Automaton Technique 32

3.3 Preliminary Characteristics . 36

3.4 Compressing Utilization Sequences 42

3.5 The Final Characteristic at Work 47

3.6 Analyzing the Algorithm . 55

3.7 The Implementation . 57

4 Tree-Decomposition Algorithms 72

4.1 Shrinking Tree Decompositions 72

4.2 The Separator Approach . 80

4.3 The Algorithm by Bodlaender . 84

5 Computing Tree Decompositions 91

5.1 Generating Test Cases . 91

5.2 The Algorithm by Arnborg, Corneil, and Proskurowski 94

6 Conclusions 96

6.1 Shrinking Tree Decompositions Is Not Feasible 96

6.2 Further Directions . 97

6.3 Comments on the Development Tools 99

4

A Notes on the Software 106

A.1 Graph Utilities . 106

A.2 Tree Decomposition and Path Decomposition 109

Bibliography 114

Index 118

5

Chapter 1

Introduction

“How much does a given graph resemble a tree?” — this question has led
to the notion of the treewidth of a graph and to the related notion of tree
decompositions, which represent the constructive content of the treewidth
measure of a given graph. In this work, we describe and analyze approaches
to derive small tree decompositions of arbitrary graphs.

Trees are very simple graphs: many graph problems can be solved ef-
ficiently on trees, because these problems often require only a bottom-up
or top-town traversal of the nodes with constant work at each node. Ask-
ing how similar an arbitrary graph is to a tree is motivated by the hope of
finding efficient algorithms that exploit the “tree-like” structure. Consider
for example the IndependentSet problem: given a graph G = (V,E) and
an integer `, is there a vertex set W ⊆ V of size ` such that no two ver-
tices in W are adjacent? This problem is NP-complete on general graphs
[Kar72], but on a tree T = (V,E), we can solve it in linear time in one
bottom-up pass: We choose an arbitrary r ∈ V as root and let Tx = (Vx, Ex)

root r

x

Tx

denote the maximal subtree of T with root x ∈ V ;
proceeding from the leaves up to the root, we mark each
node x with a pair of integers (i, j), where i is the size
of the largest independent set in Tx that includes x and
j is the size of the largest independent set that does not
include x. Leaves get labeled (1, 0); for inner nodes, we
can easily calculate (i, j) from the corresponding values
of the children (see Figure 1): The largest independent set with x in Tx is
the union of {x} and largest independent sets in the subtrees rooted at the
children of x so that each independent set in a subtree does not include the
root of the subtree. The largest independent set without x in Tx is the union
of the largest independent sets in the subtrees rooted at the children of x;

6

(1, 0) (1, 0) (1, 0)

(1, 0) (1, 0)

(1, 2)(4, 3)

(1, 1)(1, 2)

(1, 0)

(6, 7)

Figure 1: A tree with node labels (i, j) indicating the size of the largest
independent set in the subtree with the root (i), and without it (j).

if for the root of T , i or j is greater than `, then the algorithm accepts,
otherwise it rejects.

For computing information about its subtree Tx, each node x uses the
information from its children. Can this dynamic-programming technique be
extended to graphs that in some way look like a tree? The graph below on
the right is derived from the tree on the left by replacing each node with a
triangle of vertices so that the triangles of adjacent nodes share an edge (and
no edge is shared more than once):

We now explain how to extend the algorithm to solve IndependentSet on
“tree-like” graphs derived by the “triangle construction” above. In addition
to a graph G = (V,E), the input also comprises the instructions for building
G, namely a tree T = (X,F) and a mapping B : x 7→ {u, v, w} that associates
tree nodes x with triangles u, v, w in the graph G. The computation proceeds
bottom-up in T (with a root chosen arbitrarily), and nodes x ∈ X get labeled
with information about certain subgraphs Gx of G. Informally speaking, Gx

is the subgraph corresponding to Tx in the tree:

7

chosen root rx

Tx

Gx

More precisely, for leaves x, Gx is just the triangle B(x), and for inner tree
nodes, the graph Gx results from joining the graphs Gy corresponding to
children y of x to the triangle B(x). For the root r, Gr is the entire graph.
Information about large independent sets in Gx is stored with x, just like
the pair (i, j) for Tx in the case of a tree. Note that for each child y, the
subgraph Gy shares exactly two vertices with B(x). Independent sets of Gx

can be restricted to independent sets of Gy; the restriction of the largest
independent set of Gx will be an independent set of Gy that is the largest
one satisfying the set-membership status of the two boundary vertices. It is
therefore sufficient to label nodes x with three integers (i1, i2, i3) indicating
the sizes of the largest independent set in Gx when none, the first or the
second boundary vertex must be in the independent set. Finally, if and only
if at the root node, the maximum of the integers is at least `, we know that
there is an independent set of the required size `.

We have therefore just extended a dynamic-programming algorithm solv-
ing a graph problem on trees to a class of somewhat more complex graphs,
maintaining the linear running time. In doing so, we made a distinction
between the graph G and its “underlying” tree T ; constant-time operations
at nodes x of the tree produced information about partial solutions on sub-
graphs Gx corresponding to subtrees Tx with root x. Rather than storing
complete solutions, we kept only characteristic data—the size of the largest
independent set for each configuration of included boundary vertices.

The outlined approach can be applied to a considerably larger class of
graphs and problems. Graphs to which our algorithm can be adapted are

• graphs that allow one triangle edge to be shared by several children:

x

In this case, there is no longer a one-to-one correspondence between

8

the graph and the tree. For instance, the graph above and the one on
the left below both originate from the tree on the right.

x
x

Therefore for each tree node, we need to record where in the parent
triangle the two new edges of the graph are connected. The extension
of the algorithm itself is straightforward; specifically, the linear running
time is preserved.

• graphs resulting from “triangle graphs” by edge deletion:

If the edge between two boundary vertices is missing, they can both
be part of a large independent set; hence we need to extend the triples
(i1, i2, i3) at tree nodes x to quadruples (i1, i2, i3, i4) where i4 indicates
the size of the largest independent set in Gx containing both boundary
vertices. After edge deletion, the tree from which the graph was con-
structed is no longer obvious and must therefore be supplied as part of
the input.

• graphs constructed by using = K4 or = K5 or larger complete
graphs Kk+1 instead of triangles:

If we use Kk+1, there are k vertices on the boundary between parent
and child, that is, parent and child overlap on k vertices. For each
of the 2k subsets S of those k vertices, we need to record the size of
the largest independent set containing S. It should not come as a
surprise that k contributes an exponential factor to the running time
of our algorithm—any graph with n = k + 1 vertices is a subgraph

9

of Kn = Kk+1 and the IndependentSet problem is NP-complete on
general graphs.

The class of graphs at which we arrive by applying all three generalizations,
that is, by choosing a k, not restricting the degree of tree nodes and taking
the closure with respect to edge deletion, will be defined later as “partial
k-trees” [Ros74, ACP87] or “graphs of treewidth at most k” [RS83, RS86].
The treewidth k will be taken as a measure of how much a graph resembles
a tree. We support this claim with the following remarks:

• Collections of trees, called forests, are perfectly “tree-like.” They have
treewidth k = 1.

• With growing k, we employ larger and larger complete graphs Kk+1

in building graphs of treewidth k. These complete graphs are very
much different from trees. Moreover, if we look at graphs of growing
treewidth (laid out using a spring-embedder method), they intuitively
look less and less like trees:

k = 1 k = 2

k = 3 k = 4

• The running time of our algorithm for IndependentSet depends ex-
ponentially on k, thus being linear for trees and graphs of constant
treewidth and exponential for general graphs. For general graphs, a
tight bound on k is n − 1 as it can be shown that Kn cannot be con-
structed from a tree using Km with m < n (this is a consequence of
Lemma 11 in the next chapter).

10

Why do we need to supply the underlying tree with the input to our algo-
rithm? If we delete edges gradually from “triangle graphs,” the underlying
tree disappears from our perception when we lay out the graph in a natural
way (again using a spring-embedder layout method):

Squeezing cycles will give us potential embeddings of a partial “triangle
graph” into a complete one:

= ↪→ =

For general k-trees however, the situation appears to be much more difficult.
What tree structure we have at the start of the following example gets lost
by removing edges (k = 3):

complete −20% edges −40% edges

Let us now take a step back and consider how the observations about re-
semblance of graphs to trees and its algorithmic use fit into the “big picture.”
Clearly, most graphs do not resemble trees—thus talking about algorithms
for “graphs of bounded treewidth” means to talk about algorithms that do
not work on all graphs, but only on a subset of general graphs. Why should
we put up with such a limitation? Our example problem, IndependentSet,
is NP-hard and therefore is unlikely to have an efficient, i.e., polynomial-time,

11

algorithm. Two approaches offer remedy. First, we may decide to settle for
the second-best solution and seek approximation algorithms. Second, and
this is the route we took in solving IndependentSet on partial k-trees,
we can restrict the set of permissible inputs so that the restricted problem
can be efficiently solved. Obviously, we want to make this restricted input
class as large as possible while maintaining a small running time. Preferably
the restriction should be in a certain way natural, parameterized to form an
ascending chain R1 ⊂ R2 ⊂ . . . of more and more general inputs (so that for
every input G, there is an index i with G ∈ Ri) and applicable to a general
class of problems. The classes of graphs of treewidth at most k meet all these
goals. Keeping k constant, we have a linear-time algorithm for the Indepen-

dentSet problem, and by choosing k appropriately large, we cover a rather
large class of graphs, including for example series-parallel graphs (k = 2)
[Bod93] and `-outerplanar graphs (k = 3`− 1) [Bod93], but also the control
flow graph of imperative programming languages [Tho97]. Graphs are ubiq-
uitous combinatorial structures, and the dynamic-programming technique
for solving problems using a tree decomposition extends to a large class of
problems; Courcelle [Cou90, Bod93] pioneered in formulating logical systems
in which each proposition about a graph can be checked efficiently on graphs
of bounded treewidth.

However, there are drawbacks and issues that we have not yet addressed.
We already noted that letting k grow with the graph size, i.e., k = |V | − 1,
leads to a class that encompasses all graphs and to an exponential-time algo-
rithm. In general, the time complexity of algorithms operating on graphs of
treewidth k will depend at least exponentially on k, since for k = n− 1 they
reduce to exhaustive search. Worse, the problem of determining treewidth
is NP-hard [ACP87], and thus computing minimum-width tree decomposi-
tions of arbitrary graphs seems to be out of question. Still, computing the
minimum-width tree decomposition of a graph with a known bound k on
the treewidth is possible, even in time linear in |V |, but, again, exponential
in k [Bod96a]. Furthermore, the problem of computing tree decompositions
exhibits a property called fixed-parameter tractability [DF95]—there exist al-
gorithms with running time polynomial (even linear) in n where the degree of
the polynomial is independent of k, and k can only influence the “constants.”

From a theoretical point of view, we might be quite satisfied with these
results. After all, we cannot really expect much more from NP-hard prob-
lems. On the other hand, the practical value of these results has not yet been
investigated. They definitely merit an assessment of practicality, because the
problems solvable efficiently on graphs of bounded treewidth have plenty of
real-world applications, and some applications provably produce only prob-
lem instances with graphs of bounded treewidth. The goal of this master’s

12

thesis is to shed light on the question of practical usability of general tree-
decomposition techniques and algorithms for computing tree decompositions.
To this end, Chapter 2 focuses on the dynamic-programming technique using
tree decompositions; in Chapter 3, we discuss a major application of the ap-
proach, namely how to compute “path decompositions.” Chapter 4 presents
the candidates for practical tree-decomposition algorithms, among them Bod-
laender’s linear-time algorithm. Evaluating implementations means produc-
ing and executing benchmarks; in Chapter 5, we describe methods to create
test inputs and show how our implementation of the tree-decomposition al-
gorithm by Arnborg, Corneil, and Proskurowski [ACP87] performs on them.
In Chapter 6, we present our conclusions on the practicality of the various
tree-decomposition algorithms and give a short critique of our development
environment. Further information on the software can be found in the ap-
pendix.

13

Chapter 2

Using Tree Decompositions

2.1 Preliminaries

In this section, we will give fundamental definitions and properties related
to tree decomposition; most of these are drawn from [BK96] and [Bod97],
others follow [BH98]. Graphs will always be undirected, finite, simple, and
without loops. Some basic notation is fixed in the following definition:

Definition 1 (Graphs and Trees).

(1) G = (V,E) is called a graph if V is a finite set of vertices and E is
a subset of the set {{u, v} : u, v ∈ V and u 6= v} of unordered pairs
{u, v} from V , which are called edges and which are sometimes written
as (u, v).

(2) For u, v ∈ V , we call u and v adjacent if there exists an edge {u, v} ∈ E.
We also say that u is a neighbor of v. The degree of a vertex is the
number of its neighbors.

(3) A graph G′ = (V ′, E ′) is called a subgraph of G if V ′ ⊆ V and E ′ ⊆ E.
G is also called a supergraph of G′.

(4) For V ′ ⊆ V , the subgraph G[V ′] induced by V ′ is the subgraph with the
vertex set V ′ and the edges E ′ = E ∩ {{u, v} : u, v ∈ V ′ and u 6= v}.

(5) A graph G = (V,E) is complete, if there is an edge between every pair
of vertices. A complete subgraph with k vertices is called a k-clique.

(6) A path in G is a subgraph P = (V ′, E ′) of G where V ′ can be written
as V ′ = {v1, . . . , vp} so that E ′ = {{vi, vi+1} : 1 ≤ i < p}. We require
that V ′ 6= ∅ and define the length of P as p − 1. P is called a path
between u and v if v1 = u and vp = v; note that in our definition, a
path does not have a distinguished direction.

14

(7) A graph G is connected, if there exists a path between any two of its
vertices; a connected component of G is a maximal connected subgraph
of G.

(8) A tree T = (X,F) is a connected graph with |F | = |X| − 1. A subtree
is a connected subgraph of a tree.

(9) A rooted tree T = (X,F, r) is a tree with a root r ∈ X. The depth of
a node x ∈ X in a rooted tree is the length of a shortest path from x
to r. The neighbors of x ∈ X with greater depth than x are called the
children of x.

(10) The root of a subtree T ′ = (X ′, F ′) of a rooted tree T = (X,F, r) is
the node x ∈ X ′ with the smallest depth. The subtree Tx rooted at x
of a rooted tree T = (X,F, r) is the largest subtree of T with root x.

Lemma 2. In a tree, there is exactly one path between any two vertices.
Moreover, between two disjoint subtrees T1 = (V1, E1) and T2 = (V2, E2),
there is exactly one path P = (V ′, E ′) with V ′ = {v1, . . . , vp} so that V1∩V ′ =
{v1} and V2 ∩ V ′ = {vp} (and E ′ = {{vi, vi+1} : 1 ≤ i < p}). 2

Unless otherwise noted, for G = (V,E), we set n = |V |. When talking about
a graph G = (V,E) and an associated tree T = (X,F), the word vertex
will be reserved for elements of V whereas node or tree node will be used for
elements of X.

To make use of the “tree structure” of the input graph G, the Inde-

pendentSet algorithm presented in the introduction needs to know how G
derives from a tree. A “tree decomposition” represents this information in a
format suitable for algorithms exploiting the bounded treewidth. Recall the
strategy we used: Proceeding in the underlying tree from the leaves up to
the root, we computed at each tree node x the sizes of large independent sets
in the subgraph Gx corresponding to the tree Tx rooted at x. In addition
to the sizes produced by the children of x, these sizes depended only on the
part of Gx in which solutions for Gy of children y of x could intersect. Thus
the part of Gx relevant to the computation at x is precisely the complete
graph Kk+1 (or what remains of it after edge deletion) we put for x during
the construction of G; a mapping B from x to the corresponding “triangle”
Kk+1 then is what we need in the general case as well: A mapping from tree
nodes x to the corresponding k + 1 vertices of G or, equivalently, for each
tree node x a bag Bx ⊆ V . This leads to the following definition:

Definition 3 (Tree Decomposition). A tree decomposition of an undirected
graph G = (V,E) is a tree T = (X,F) with bags Bx ⊆ V for each x ∈ X
such that

15

(1)
⋃

x∈X Bx = V

(2) for all graph edges (u, v) ∈ E, there is a tree node x ∈ X such that
u ∈ Bx and v ∈ Bx

(3) for all tree nodes x, y, z ∈ X: if y is on the path from x to z in T , then
Bx ∩Bz ⊆ By.

If T is a rooted tree, we call (T, {Bx}x∈X) a rooted tree decomposition.

Some explanations of the conditions are in order. (1) is clear, since we want
to cover all vertices of the graph. Each edge must be considered at some
point during the computation, hence condition (2). Condition (3) enforces a
locality constraint; we may look at (3) in the following way:

Proposition 4. Condition (3) in the definition of tree decompositions can be
replaced by

(3′) for every vertex v ∈ V , the nodes corresponding to bags containing v
form a connected component of T .

We will assume that for each bag Bx ⊆ V , the corresponding tree node x
is known, which allows us to identify tree nodes x and their bags Bx; the
matching picture of a tree decomposition then consists of a tree with bags as
nodes where overlapping bags share an ancestor containing the overlap.

Proof. Consider the subgraph T (v) of T induced by the bags containing v ∈
V . If T (v) is not connected, there is a path between two of its components,
which has a tree node y that does not contain v, i.e., v 6∈ By. This contradicts
(3), hence T (v) must be connected.

Conversely, if every vertex occurs in a connected component of T , then
for y on the path from x to z, By contains all v for which T (v) contains both
x and z. Therefore By ⊇ Bx ∩Bz. 2

Definition 5 (Treewidth). The width of a tree decomposition is

max
x∈X

|Bx| − 1.

The treewidth of a graph is the minimum width of all its tree decompositions.

As desired, trees and forests have treewidth 1—just put every pair of adjacent
vertices in a bag of size 2 and make each new bag (but the first) adjacent to
an older bag with which it shares a vertex or to any bag, if there is no older
bag with which it shares a vertex.

The notion of tree decomposition arose in the context of analyzing a
graph. If we take a constructive approach, as we did in the introduction

16

when we considered extensions to the triangle construction, we arrive at
the concept of k-trees, which by Proposition 8 below are maximal graphs of
treewidth k.

Definition 6 (k-Trees). The class of (total) k-trees is characterized induc-
tively as follows:

(1) The complete graph with k + 1 vertices, Kk+1, is a k-tree.

(2) If G = (V,E) is a k-tree and B ⊆ V is a k-clique in G, then the graph

G′ = (V ∪̇{v}, E ∪ {(u, v) : u ∈ B})

that results from adding a new vertex v adjacent to all vertices of the
basis B of v, is a k-tree.

(3) Only the graphs defined by (1) and (2) are k-trees.

If G = (V,E) is a k-tree, then any graph G′ = (V,E ′) with the same vertices
and a subset of edges E ′ ⊆ E is a partial k-tree.

Adding a new vertex yields a new (k+1)-clique; if we put each of these into
a bag, these bags fit together like a tree. “Thinning out” k-trees yields all
possible trees of treewidth k:

Proposition 7. A graph G = (V,E) is a partial k-tree if and only if it has a
tree decomposition of width at most k.

Proof. A k-tree has a tree decomposition of width k: The first (k + 1)-
clique makes up a bag; whenever we add a vertex v, we put the resulting
(k + 1)-clique into a new bag and connect this bag to any existing bag that
contains the k-clique B to which v was made adjacent. This yields a tree
decomposition, since the bags form a tree, all vertices and edges are covered,
and vertices occur in connected components of the tree. Moreover, this tree
decomposition has bags of size k + 1 and thus width k. A partial k-tree G
is the result of deleting a number of edges from some k-tree G0, therefore a
tree decomposition for G0 is also a tree decomposition for G.

Given a graph G = (V,E) and a tree decomposition of width at most
k, we rewrite the tree decomposition so that we can use it to construct a
supergraph G0 = (V,E ∪ E0) that is a k-tree. Our goal is to arrive at a
tree decomposition in which each bag has size k+1 and where adjacent bags
differ in exactly two vertices. Given such a tree decomposition, we turn the
bags into (k + 1)-cliques by inserting new edges and thus get a k-tree: we
can construct the augmented graph starting from any bag and performing a
depth-first traversal of the tree, adding for each non-visited neighbor its new

17

vertex to the graph and making the new vertex adjacent to a k-clique in the
current bag.

Any tree decomposition can be adjusted to the required form, maintain-
ing its width: Start by contracting adjacent bags that are equal or where one
is contained within the other. Choose arbitrarily a root of the tree decompo-
sition, and complement bags with less than k+ 1 vertices with vertices from
their parent bags. Now adjacent bags differ in at least two vertices and their
size is k + 1. Finally, insert new bags between bags that differ in more that
two vertices. 2

In the following sense, a k-tree is a maximal graph of treewidth k:

Proposition 8. If G = (V,E) is a k-tree, then the graph G′ = (V,E∪̇{(u, v)}),
which is obtained from G by adding a new edge (u, v), has treewidth k + 1.

Proof. A k-tree with n = |V | vertices has
(

k+1
2

)

+(n− (k+1))k = nk−
(

k+1
2

)

edges. If G′ had treewidth k, it would be a subgraph of some k-tree. This is
impossible, because G′ has |E∪̇{(u, v)}| = nk −

(

k+1
2

)

+ 1 edges. However, a
width-k tree decomposition of G can be turned into a tree decomposition of
G′ of width k + 1 by adding vertex u to all bags. 2

Further fundamental properties of tree decompositions are presented in the
following lemmas. An immediate consequence of the construction in the
proof of Proposition 7 is Lemma 9:

Lemma 9. Every graph G = (V,E) has a tree decomposition of size Θ(n),
and any larger tree decomposition can be reduced to linear size in time pro-
portional to the size of the given tree decomposition. 2

However, finding minimum-width tree decompositions of general graphs is
NP-hard. The Treewidth problem takes as input a graph G and an integer
k and decides whether G has treewidth at most k. Arnborg, Corneil, and
Proskurowski [ACP87] proved

Theorem 10. Treewidth is NP-complete. 2

Lemma 11 and 12 below give conditions under which certain vertices are
guaranteed to share a bag; Lemma 11 in particular is an important tool for
reasoning about tree decompositions.

Lemma 11. Let K be a clique of G. In any tree decomposition of G, there is
a bag that contains all vertices of K.

18

Proof. Fix a tree decomposition (T = (X,F), {Bx}) of G. For any vertex v
of G, the subgraph T (v) of tree T induced by the bags containing v is (by
Proposition 4) a subtree of T . We need to prove that the intersection of all
T (v), for v ∈ K, is non-empty. Choosing an arbitrary node of T as root turns
every subtree T (v) into a rooted subtree and we can talk of the depth of a
node in T . Let v0 ∈ K be a vertex whose subtree T (v0) has the root with
the greatest depth among the roots of subtrees T (v), v ∈ K. Because v0 is
adjacent to all u ∈ K, T (v0) and T (u) overlap, and because T (v0) has the
deepest root, they must overlap at this very root. This holds for all u ∈ K,
therefore the bag corresponding to the root of T (v0) contains all vertices from
K. 2

Lemma 12. Let G′ = (U ∪̇W,E ′) be a complete bipartite subgraph of G =
(V,E), i.e., E ′ = {(u,w) : u ∈ U,w ∈ W} ⊆ E. Then in any tree decompo-
sition of G, at least one of U and W will be contained in one bag.

Proof. We use the notation from the previous proof. For u ∈ U and w ∈ W ,
T (u) and T (w) overlap because of the edge (u,w). Assume there are u1, u2 ∈
U with T (u1) and T (u2) disjoint. Let P be the path in T that connects T (u1)
and T (u2). For any w ∈ W , T (w) must have non-empty intersection both
with T (u1) and T (u2), hence it must be a supergraph of P . Consequently,
all T (w) overlap on P , so there is a bag containing all w ∈W . 2

2.2 The Generic Tree-Automaton Technique

We will now present and analyze a “generic” algorithm for determining a
graph property (such as the existence of a large independent set) using a tree
decomposition. The presented form of the framework is due to Bodlaender
and Kloks [BK96, Bod97]; the IndependentSet problem of Chapter 1 will
serve again as an example.

Our setup is as follows (see Figure 2): As input, we are given a graph G =
(V,E) and a tree decomposition (T = (X,F), {Bx}x∈X). We choose any tree
node r as root of T , so that (T, {Bx}) becomes a rooted tree decomposition
and Tx can be defined as the maximal subtree of T rooted at x. Every node
x has a bag Bx, which we identify with the subgraph G[Bx] of G induced
by the vertices of Bx. Similarly, the subtree Tx gives rise to a vertex set,
the union of all bags in Tx, which again is identified with the corresponding
subgraph:

Definition 13 (Subgraph at a Tree Node). For a graph G = (V,E), let (T =
(X,F, r), {Bx}x∈X) be a rooted tree decomposition with root r ∈ X. The

19

chosen root rx

Tx

Gx
Bx

Figure 2: Examples of x, Bx, Tx, and Gx

subgraph Gx at tree node x ∈ X is the subgraph of G induced by the vertices
in the bags of Tx = (Xx, Fx), i.e.,

Gx = G
[

⋃

{By : y ∈ Xx}
]

.

Moving in T from the leaves up to the root, the corresponding subgraphs
Gx get larger and larger, up to Gr = G. At node x with children y1, . . . , yd,
the graph Gx is the union of Bx and Gy1

, . . . , Gyd
. The idea is to combine

solutions on each of the Gyi
to solutions on Gx, taking into account the

structure of Bx. For many graph problems it is possible to define the notion
of a partial solution on a subgraph Gx as the restriction of a solution on G
to Gx so that

• the partial solutions on Gr = G include the actual solutions to the
problem, and

• partial solutions on each subgraph Gyi
at the children yi of x can be

combined to partial solutions of the subgraph Gx of their parent x.

For IndependentSet, we saw already that partial solutions are large in-
dependent sets; for HamiltonianCircuit—the problem of finding a path
with adjacent endpoints that visits all vertices of G—a partial solution on
Gx is a set of disjoint paths in Gx that cover all vertices of Gx and have their
endpoints in Bx, or a complete Hamiltonian circuit [Bod97]. The combina-
tion of partial solutions is facilitated by the property of tree decompositions
that only vertices in Bx can occur in more than one subgraph Gyi

:

Lemma 14. Let G = (V,E) be a graph with a rooted tree decomposition
(T = (X,F, r), {Bx}x∈X). Let x be a tree node with children y1, . . . , yd. If
the vertex v ∈ V appears in both Gx and G \ Gx, or if v occurs in at least
two of the subgraphs Gy1

, . . . Gyd
, then v must be in the bag Bx of node x.

20

Conversely, if some vertex u ∈ V is contained in bags By and Bz, then it also
belongs to the bag of the lowest common ancestor of y and z. 2

So when combining a partial solution on each Gyi
to partial solutions on Gx,

“interference” between the partial solutions on the Gyi
can only occur via the

vertices in Bx. Of course, some partial solutions on subgraphs Gyi
may be

incompatible with each other and cannot be combined to a partial solution
on Gx. Yet if there is a partial solution on Gx, we require that it can be
constructed from partial solutions on the Gyi

. Since we proceed bottom-up
in the tree, we cannot know which partial solution at Gyi

can contribute to a
partial solution on Gx, therefore at each node, we must be able to compute
all partial solutions.

What information about partial solutions is passed upwards in the tree?
Even to solve decision problems, the combination step needs information with
constructive content, such as large independent sets as possible parts of the
largest independent set. The tree will usually have Θ(n) nodes (Lemma 9),
hence to get a linear time bound, the algorithm may only perform constant
work at each node. Passing entire partial solutions—e.g., independent sets
in the subgraph—to parents is not an option, because there may be expo-
nentially many and producing all possible combinations would take expo-
nential time. Therefore, information passed along the edges of the tree must
be restricted to characteristics of partial solutions so that the number of
characteristics at any tree node is bounded by a polynomial. How can we
arrange that? Returning to our example, we noted that independent sets of
subgraphs Gyi

may interfere only on vertices from Bx (Lemma 14), therefore
characteristics for independent sets I in Gx are chosen as pairs (s, I ′) with s
the size of the independent set and I ′ = I ∩Bx the restriction of I to Bx. For
a tree decomposition of width k, there are at each node at most 2|Bx| ≤ 2k+1

different pairs (among pairs with the same set I ′, we discard all but one with
the greatest value of s). Since we consider k to be a fixed parameter, we have
at most 2k+1 = O(1) different characteristics. Generally, when we have found
an O(log n)-size characteristic for a problem, we know that there is only a
polynomial number of characteristics and hence a polynomial time algorithm
combining characteristics from the leaves up to the root.

A characteristic should convey relevant information about a solution to
the problem restricted to a subgraph. As such, a characteristic at some node
x indicates that there is a solution to the problem in Gx; characteristics at
the root node r thus stand for solutions to the problem on the entire graph
Gr = G. To decide whether a characteristic exists at the root, we must
consider all combinations of characteristics of the children of the root, which
in turn result from the characteristics of their respective children. So we

21

proceed bottom-up in the tree computing all characteristics at each node—
the full set of characteristics of the node—lest we miss some characteristic
that represents a necessary part of every solution on the full graph.

Finding the right class of characteristics for a given problem is one half
of the problem of applying the general technique. The other half is to define
how characteristics are combined during the computation on the tree T . To
this end, the rooted tree decomposition is simplified so that there are only
four types of tree nodes:

Start Nodes are leaves of the tree and their bags contain only a single vertex.

Introduce Nodes have exactly one child. Their bag contains all the vertices
of the child’s bag, plus a single newly “introduced” vertex.

Forget Nodes have exactly one child. Their bag contains all the vertices of
the child’s bag except for exactly one “forgotten” vertex.

Join Nodes have exactly two children, whose bags must contain exactly the
same vertices. The bag of a Join node contains the same vertices as
the bags of the children.

In Section 2.4, it will be shown how any tree composition can be transformed
into this form without increasing its width and that the size of the resulting
tree decomposition remains linear in n. Defining the combination of char-
acteristics now means to give four constant-time algorithms, one for each
type of node, which on input Bx and all characteristics at the children of x
produce all characteristics at node x. For IndependentSet,

• the algorithm for Start nodes with vertex v returns the two character-
istics (1, {v}) and (0, ∅);

• for Introduce nodes x with new vertex v, we take all characteristics
(sy, I

′
y) of the single child y and pass them on, including a new char-

acteristic (sy + 1, I ′y ∪ {v}) if I ′y ∪ {v} is an independent set within Bx

(and hence within Gx).

• if x is a Forget node, we modify all the characteristics (sy, I
′) of the

child y to (sy, I
′ \ {v});

• at Join nodes, we consider all combinations of two characteristics (sy, I
′
y)

and (sz, I
′
z) of the children y and z, respectively, and check whether

I ′y = I ′z. In that case, a characteristic (sy + sz − |I ′y|, I ′y) is produced.
At tree nodes x, combination procedures should only produce characteris-
tics Cx for which a partial solution Sx on the subgraph Gx exists—we call
this the correctness of combination procedures. Moreover, combination algo-
rithms must also have the completeness property: At each tree node x, the

22

characteristic Cx of every partial solution Sx on the subgraph Gx must be
found. This is equivalent to requiring that at every tree node the full set of
characteristics is computed. Correctness and completeness are usually proved
by induction on the tree: The Start-node combination algorithm must yield
all characteristics of solutions in the single-vertex graph, and for the other
node types, it must be shown that the combination algorithms produce full
sets of characteristics from the full set of their children. For the Indepen-

dentSet combination procedures above, the correctness and completeness
proofs are straightforward.

In the terms of finite-state automata theory, the generic approach can
be interpreted as the construction of a tree automaton A = (Q,Σ, QI , δ)
(our notation follows [Sei90]). The set of states Q is the set of all possible
characteristics; the ranked alphabet Σ = Σ0∪̇Σ1∪̇Σ2 is the disjoint union of
tuples describing the possible nodes of a tree decomposition of width k,

Σ0 = {(Start, v) : v a vertex}
Σ1 = {(Introduce, G, v) : G graph with at most k + 1 vertices, with v} ∪̇

{(Forget, G, v) : G graph with at most k vertices, without v}
Σ2 = {(Join, G) : G graph with at most k + 1 vertices}

so that tree decompositions of width k (and the graph that they describe) can
be expressed as words of the tree language TΣ, which is inductively defined as
containing all symbols from Σ0, all words a(t) with a ∈ Σ1 and t already in TΣ,
and all words a(t1, t2) where a ∈ Σ2 and t1, t2 ∈ TΣ. The transition relation
δ ⊆ ⋃2

d=0 Q × Σd × Qd contains for Start nodes x with vertex v all tuples
(Cx, (Start, v)) where Cx is any characteristic at this node. For Introduce
nodes x with child y and introduced vertex v, δ has all transitions of the
form (Cx, (Introduce, Bx, v), Cy) forcharacteristics Cx that can be obtained
by inserting v into the child’s characteristic Cy. Similarly, for Forget nodes
x with child y and forgotten vertex v, δ includes all (Cx, (Forget, Bx, v), Cy)
where the Forget node combination procedure builds Cx from Cy; Join nodes
x with children y and z lead to transitions (Cx, (Join, Bx), Cy, Cz) if Cy and
Cz can be merged into Cx, taking into account the structure of the subgraph
Bx.

Using the transition relation δ, we can define a tree-automaton computa-
tion on a word w ∈ TΣ as a labeling of the nodes of the tree w = a(t1, . . . , td)
(a ∈ Σd, t1, . . . , td ∈ TΣ) with legal transitions from δ. We call a such a label-
ing a q-computation if the root gets labeled with a transition leading to state
q; the language accepted by the tree automaton is the set of trees w ∈ TΣ

that have a q-computation for a q in the set of initial states QI . Hence, by
setting QI to the set of Q of all possible characteristics, our specific tree au-

23

tomaton A accepts all tree decompositions for which a characteristic at the
root node can be found. The fact that the transitions are described by the
relation δ and not by a function introduces nondeterminism into the com-
putation of tree automata. The “recipe” for constructing algorithms in the
next section can be seen as an instance of the well-known subset construc-
tion, where states get replaced by sets of states and the transition between
sets of states can be described by a function.

If there is any characteristic of a solution at the root of the tree decom-
position, we know that there is at least one solution to the problem on the
entire graph. At this point, we have solved the decision problem, but because
we have passed only characteristics of partial solutions instead of the partial
solutions themselves, an additional effort is needed to actually construct a
solution: During the first phase of the algorithm, we store with each charac-
teristic the characteristics that were combined to produce it. We select an
arbitrary characteristic at the root node, and from the root to the leaves, we
select at each node the characteristic that led to the chosen characteristic at
the root. Similar to the original computation of all characteristics, we com-
bine characteristics from the leaves up to the root, but this time, we discard
all non-selected characteristics and retain for each characteristic a complete
partial solution. At the root, we thus get one solution to the problem on
the whole graph. The running time remains linear, if we can combine the
partial solutions of the children in constant time at each tree node. This is
often possible taking advantage of hints acquired in the combination of the
corresponding characteristics and using “implicit” representations of partial
solutions that can be merged and extended in constant time, and converted
to full solutions in time linear in the size of the full solution.

2.3 A Recipe

The previous section described the intuition behind the notions of the char-
acteristic of a partial solution and of the full set of characteristics. We now
construct a “recipe” for fitting problems into the tree-automaton framework
for efficiently solving graph problems on graphs of bounded treewidth. The
ingredients to solving decision problems in linear time are

(1) the definition of characteristics of partial solutions,

(2) the proof that there is only a constant number of characteristics,

(3) four constant-time algorithms, one for each of Start, Introduce, Forget,
and Join nodes, that take as input

• a tree node x of the algorithm’s type,

24

• the bag Bx and introduced or forgotten vertices,

• for each child yi of x, one characteristic Cyi
,

and return a set of characteristics at x,

(4) proofs that for every characteristic Cx produced by a combination pro-
cedure from Cy1

, . . . , Cyd
, a partial solution Sx with characteristic Cx

exists at x whose restrictions Syi
to Gyi

have characteristic Cyi
(this

is the correctness property) and that for every partial solution Sx, the
combination procedure for x finds the characteristic Cx of Sx, provided
that the combination procedure is called for all combinations of char-
acteristics from the full sets at children yi (this is the completeness
property).

Theorem 15. If the prerequisites (1)–(4) are met for some decision problem
P , there is a linear-time decision algorithm for P .

Proof. Moving from the leaves up to the root, we compute characteristics by
invoking the algorithms of ingredient (3) for each combination of children’s
characteristics and taking the union of the resulting sets of characteristics.
By induction on the tree and by applying (4), these sets are full sets of
characteristics. If the full set Cr at the root is non-empty, we accept, otherwise
we reject. The running time is O(1) at each node, because the algorithms at
each node are invoked only a constant number of times. 2

Proceeding from decision problems to computing solutions, we need to supply
an additional ingredient:

(5) four polynomial time algorithms, one for Start, Introduce, Forget, and
Join nodes, that take as input

• a tree node x of the algorithm’s type,

• the bag Bx and introduced or forgotten vertices,

• a characteristic Cx from the full set at x,

• for each child yi of x, a pair (Cyi
, Syi

) of the characteristic Cyi
at yi

that led to Cx and a partial solution Syi
at yi with characteristic

Cyi
,

and produce as output a partial solution Sx at x that has characteristic
Cx and whose restriction to Gyi

is Syi
.

Theorem 16. If the conditions (1)–(5) are met for some problem P , there
is a polynomial-time algorithm computing a solution to P . If solving the
decision problem using Theorem 15 takes time O(n), and the algorithms of
ingredient (5) have constant running time, the solution can be computed in
time O(n).

25

Proof. Compute a characteristic of the root node using the algorithm outlined
in the proof of Theorem 15, but store with each new characteristic pointers to
the corresponding characteristics of the children. Then apply the algorithms
of ingredient (5) in a bottom-up pass on the tree. 2

2.4 The Implementation

We successfully implemented the abstract tree-automaton technique as a
generic C++ “template class” [SE90]. For a concrete problem, the ingredi-
ents of the recipe from Section 2.3 are substituted into this template: Generic
(compile-time) parameters supply the class of characteristics (ingredient (1)),
the four combination algorithms (ingredient (3)) and optionally four algo-
rithms to construct solutions from characteristics (ingredient (5)). By this
means, we obtained algorithms for deciding IndependentSet, Coloring,
and Pathwidth as well as for solving the corresponding construction prob-
lems. The Pathwidth problem and computing path decompositions will be
treated in detail in the next chapter.

An input instance consists of a graph G = (V,E), a tree decomposition
(T = (X,F), {Bx}x∈F) of G and parameters specific to the problem such as
the number of colors for Coloring; we assume that the tree decomposition
has size O(n) and let k denote its width. Processing the input starts with
the conversion of the supplied tree decomposition into a rooted tree decom-
position with Start, Introduce, Forget, and Join nodes. A root of T is chosen
arbitrarily. Then a recursive algorithm converts subtrees of the input tree
decomposition into the desired form, creating for leaves a Start node and
a chain of Introduce nodes, generating a chain of Join nodes for each node
with at least two children, and replacing nodes with a single child by chains
of Forget and Introduce nodes. A rough estimate of the number of resulting
nodes can be obtained as follows: There are as many Start nodes as leaves;
each node of the original tree decomposition causes at most k + 1 Introduce
nodes to be created; every vertex of the graph is forgotten exactly once; and
there are at most twice as many Join nodes as there were nodes of degree
greater than two. Therefore the converted tree decomposition still has size
O(n); Kloks [Klo94] shows that with a more involved algorithm, the number
of Start, Introduce, Forget, and Join nodes can be limited to at most 4n.

In the further discussion, x ∈ X denotes a tree node with children
y1, . . . , yd, i.e., d = 0 for Start nodes, d = 1 for Introduce and Forget nodes,
and d = 2 for Join nodes. The straightforward way of finding a character-
istic at the root of T would be to compute in a bottom-up pass on T the
full sets of characteristics at every node; at node x, we would repeatedly

26

invoke the combination procedure appropriate for x with all combinations
(Cy1

, . . . , Cyd
) of one characteristic from the full set of each child yi of x.

This approach is unsatisfactory because we are only interested in a single
characteristic at the root and not in all of them. Moreover, we would like to
compute at each node only as many characteristics as necessary to find the
characteristic at the root. For this reason, the computation of characteris-
tics is pipelined: every node x remembers the state of the computation of
the full set of characteristics Cx at x and when the parent node asks for the
next characteristic from Cx, it resumes the computation of the full set until
a new Cx is found, then sends Cx to the parent, and suspends the execution
until the parent issues the next request (see Section 6.3 for a discussion of
pipelining in C++). Join nodes need to combine all pairs of characteristics
from their two children, so, in general, they ask more than once for the same
characteristic. Therefore, we store at each node the characteristics already
computed in a “cache” to avoid computing them again (otherwise, we would
violate the linear time bound). At some point, the problem-specific part of
the algorithm may signalize that at node x no further characteristics can be
found—then the cache at x must contain the full set of characteristics Cx.
Since at x, all requests for characteristics can now be satisfied from the cache,
the caches at nodes in the subtree Tx can and will be discarded.

Once a characteristic at the root has been found, the algorithm enters
a second stage, in which a solution is computed bottom-up by functions
constructing a partial solution at any node x. The functions of ingredient
(5) take as parameters a characteristic Cx at node x and for each of its
children y1, . . . , yd pairs (Cyi

, Syi
) where the Syi

are partial solutions at yi

with characteristic Cyi
and where the Cyi

can be combined to Cx. Before
we can call these solution-computing procedures, we have to determine at
each node x a characteristic Cx so that characteristics of siblings can be
combined to the characteristic of their parent. During the first stage of the
algorithm, we discard the characteristics cached at x as soon as the full set
of characteristics at the parent of x has been found. Therefore we have
to recompute discarded characteristics by enumerating the characteristics of
the children y1, . . . , yd of x until a combination of (Cy1

, . . . , Cyd
) is found

that gives rise to Cx. In recomputing, we use the caches again; for situations
where memory is scarce, we optionally flush caches in the second stage as in
the first stage. However, flushing caches in the second stage means sacrificing
the linear running time—it may happen that the characteristics at the leaf
nodes have to be recomputed O(h) = O(n) times, where h is the height of T
(see also Figure 24 in Chapter 3).

Additional features of our implementation of the tree-automaton tech-
nique are the elimination of redundant characteristics based on a problem-

27

specific partial order on the characteristics (assuming that “greater” charac-
teristics are subsumed by “smaller” characteristics, as in the Independent-

Set problem, where characteristics (sx, I
′
x) were discarded in favor of char-

acteristics (s̃x, I
′
x) with s̃x > sx) and the gathering of statistics such as the

number of characteristics computed and the time spent in the stages of the
algorithm. Translating applications of the abstract tree-automaton technique
into separate software modules for the tree automaton and problem-specific
parts had the advantages that

• complex algorithms could be decomposed into small functions with
clearly defined and simple requirements,

• all problems-specific implementations equally benefited from features
and enhancements of the tree-automaton module,

• for new problems, the tree automaton did not need to be programmed
from scratch, and

• independent testing was possible.

The performance of our implementation, including the effect of optimiza-
tions, will be discussed at the end of the next chapter in conjunction with
the computation of path decompositions; information on installing our tree-
decomposition software with the tree-automaton template is given in Sec-
tion A.2.

28

Chapter 3

Finding Path Decompositions

This chapter is devoted to a particular application of the framework devel-
oped in the previous chapter: given a graph G, a bounded-width tree decom-
position of G, and an integer `, we compute a path decomposition of G of
width `, if one exists. Path decompositions are special cases of tree decompo-
sitions where the underlying tree is actually a path; the minimum-width path
decomposition defines the pathwidth of a graph. Every path decomposition
is also a tree decomposition, but, in general, a minimum-width tree decom-
position will not be a path decomposition. This implies that the treewidth of
a graph is bounded from below by its pathwidth; just like Treewidth, the
Pathwidth problem of deciding whether a graph has a path decomposition
of at most a given width is NP-complete [ACP87].

3.1 Applications of Path Decompositions

We are interested in computing path decompositions for two reasons: First,
computing path decompositions turns out to be an important problem in
VLSI design [Möh90] and, second, the algorithm for computing path decom-
positions can be extended to compute tree decompositions. The latter may
seem paradoxical because the algorithms already get a tree decomposition as
part of the input, but an investigation of the enhanced algorithm in Chap-
ter 4 will show that this algorithm can convert tree decompositions of any
width into a tree decomposition of width `, provided G has treewidth at most
`. Both the path-decomposition and the tree-decomposition variant of the
algorithm were developed by Bodlaender and Kloks [BK96].

Gate arrays are a design style for integrated circuits where the silicon
wafers have been pre-processed to a certain fabrication step, and “personal-
ization” to a concrete application usually amounts to adding a final single

29

3

2

1

Track

1 8 4 2 6 5 3 7Gates

Nets

1

2 3

4 5

Channel

Figure 3: A gate matrix layout (based on [Bod93]).

layer of metal [WE85, Möh90]. The generic wafer is made up of rows (arrays)
of gates separated by routing channels, which obey strict directional control
over routing: As depicted in Figure 3, each channel consists of two layers,
one for horizontal routing, the other for vertical routing. Through vertical
wires, every gate can connect to any of the horizontal tracks ; the number of
tracks determines the distance between rows of gates, therefore one would
like to minimize their number in order to fit more rows on the chip. Nets
are hyperedges connecting several gates; given a number of gates assigned
to a particular row and nets, our task is to arrange the gates in that row
(find a permutation of the gates) and assign nets to tracks such that nets on
the same track do not overlap and the number of tracks is minimized—we
disregard the possibility of a net changing tracks. For n nets and m gates,
the input can be encoded in an n×m boolean matrix M = (mij)1≤i≤n,1≤j≤m

such that mij = 1 if and only if net i is connected to gate j; M is called
the gate matrix, hence the problem name GateMatrixLayout. See the
left-hand side of Figure 4 for an example.

Solving the GateMatrixLayout problem is equivalent to computing
a minimum-width path decomposition (this result is due to Fellows and
Langston [FL89]): We construct a graph G by creating a vertex vi for each
net i and by linking vi and vi′ by an edge whenever there is a gate j connected
to both net i and net i′ (i.e., mij = 1 = mi′j, see Figure 4, right-hand side).
It follows that the vertices of nets connected to the same gate form a clique.
A path decomposition of G translates into a gate-matrix layout: go through
the bags of the path decomposition from the left to the right and at each
bag,

• if vi occurs for the first time, assign net i to the lowest currently unused
track so that it starts at the current position and ends at the last gate
to which it is connected,

30

1 2 3 4 5 6 7 8

1

2

3

4

5

1 1 0 0 0 1 1 0
0 0 0 1 1 0 0 0
0 0 1 0 0 0 1 0
0 1 0 1 0 0 0 1
0 0 1 0 1 1 0 0

1

2

3

4

5

Figure 4: The input gate matrix for the example of Figure 3 and the
corresponding graph. Every column of the matrix represents a gate, ev-
ery row a net. mij = 1 means that gate j must be connected to net
i; e.g., net 1 links gates 1, 2, 6 and 7, and gate 2 is connected to
nets 1 and 4. The path decomposition formed by a path of the bags
{1}, {1, 4}, {1, 4, 2}, {1, 5, 2}, {1, 5, 3}, {1, 3} corresponds to the solution of
Figure 3.

• if gate j is not yet placed and the current bag contains all nets to which
j is connected, append j to the list of placed gates.

By Lemma 11, all nets of j occur in some bag, so all gates get placed;
the number of tracks used equals the size of the largest bag. On the other
hand, an arbitrary G gives rise to an instance of GateMatrixLayout: For
every vertex v, we create a net iv, and add for every edge (u, v) a gate j(u,v)

connected to the nets iu and iv. From a layout of this instance, we produce
a path decomposition by creating for each gate j a bag that contains the
vertices v of nets iv above gate j; the width of the path decomposition is
strictly smaller than the number of tracks used.

The Pathwidth problem is also closely related to Bandwidth and other
problems measuring the “width” of total vertex orderings. For a graph G =
(V,E), the bandwidth of a total ordering on the vertices f : V ↔ {1, . . . , |V |}
is defined as the maximum distance |f(u)− f(v)| between two adjacent ver-
tices u and v, and the bandwidth of the graph is the minimum bandwidth
of all vertex orderings. We show that the bandwidth is an upper bound on
the pathwidth of a graph; further relations are listed in [Bod96b]. Given a
graph G = (V,E) of bandwidth k and an ordering f , we construct a path
decomposition of G by defining bags Bf(u) := {v : 0 ≤ f(v) − f(u) ≤ k}
and linking Bf(u) and Bf(v) by an edge if |f(u) − f(v)| = 1. If the ordering
has bandwidth k, the bags have size at most k + 1, every edge (u, v) ∈ E
is covered by Bmin{f(u),f(v)} and each vertex u occurs in the contiguous se-
quence of bags Bmax{0,f(u)−k}, . . . , Bf(u); hence the bags linked in this manner
constitute a path decomposition of G.

31

3.2 Interfacing to the Tree-Automaton Technique

The remainder of this chapter is devoted to the construction and analysis
of the path-decomposition computation algorithm by Bodlaender and Kloks
and our implementation of it. The aim is to “prepare” a linear-time al-
gorithm according to the recipe of Chapter 2, therefore we need to specify
constant-size characteristics and constant-time combination algorithms—in
other words, the number of characteristics and the time bound of the com-
bination algorithms may depend arbitrarily on the width k of the input tree
decomposition and the desired pathwidth ` but not at all on the number of
vertices of the input graph G. Characteristics are to represent partial solu-
tions, which are path decompositions of width at most ` in some subgraph
Gx of G; as we saw, characteristics need to carry the information necessary
to build from characteristics of siblings the characteristics of their parent.

Given a graph G = (V,E), a tree decomposition (T = (X,F), {Bx}x∈X)
of G and a requested pathwidth `, we plan to provide, for computing a path
decomposition of width at most ` (or determining that G has pathwidth > `),

the definition of a characteristic of a path decomposition, such that the num-
ber of characteristics is independent of n = |V |,

four combination algorithms with a time bound independent of n, which at
the four different types of tree nodes x ∈ X compute characteristics at
x from characteristics of the children of x, and

four solution-computing algorithms that expand characteristics to path de-
compositions.

We let k denote the width of the tree decomposition, and assume that the
tree decomposition has only Start, Introduce, Forget, and Join nodes. Partial
solutions Sx at tree nodes x are path decompositions of width at most ` of
the subgraph Gx. To distinguish these path decompositions from the tree
decomposition given with the input, we mark components of the former by
a hat (ˆ); furthermore, instead of writing Sx = (P̂ = (X̂, F̂), {B̂i}i∈X̂) for
a partial solution at tree node x, we denote such a path decomposition by
a sequence Sx = 〈B̂i〉1≤i≤m, with the degenerate tree P̂ = (X̂, F̂) given

implicitly by nodes X̂ = {1, . . . ,m} and edges F̂ = {(i, i + 1) : 1 ≤ i < m}.
A sequence 〈B̂i〉1≤i≤m is a path decomposition of Gx if and only if each vertex

v ∈ Gx occurs precisely in a contiguous subsequence 〈B̂i〉first(v)≤i≤last(v) and
each edge of Gx is covered by some bag (i.e., for each edge there is a bag
containing both endpoints).

Given a partial solution Sx at tree node x, how do we derive a suitable
characteristic Cx? Using Sx = 〈B̂i〉1≤i≤m itself as characteristic is ruled out

32

by the fact that Sx grows with the number of vertices of Gx, and hence
depends substantially on n. But let us postpone this issue for a moment and
consider how the algorithm would work with Cx = Sx. Then it will be easier
to identify the relevant information about Sx, which needs to be stored in
Cx.

A Start node x with vertex v would produce all possible path decompo-
sitions of the graph Gx = ({v}, ∅), e.g.,

〈{v}〉, 〈∅, {v}〉, 〈∅, {v}, ∅〉, 〈∅, ∅, {v}, {v}, ∅〉, . . .

and so on. For the moment, we ignore that there is an infinite number
of such path decompositions. An Introduce node x with child y and new
vertex v takes each path decomposition Sy of Gy (produced at node y) and
creates candidates S̃x for path decompositions of Gx by inserting v into all
contiguous subsequences of bags in copies of Sy. If a candidate S̃x consists of
bags with at most `+1 elements, and if in S̃x, all edges between v and vertices
in By are covered, then Sx := S̃x is a path decomposition of Gx of width at
most ` and is inserted into the output set. A Forget node passes on its child’s
path decompositions unchanged (note that we must not remove the forgotten
vertex); a little more work is needed for Join nodes x with children y and z:
We merge only path decompositions Sy and Sz whose paths are of the same
length and check whether the pairwise union is a path decomposition of Gx

of width at mast `. If there is a path decomposition of width at most ` of
the entire graph, it is found in principle using the given four combination
procedures.

We can limit the number of partial solutions to a finite value by only
generating partial solutions Sx in which adjacent bags differ. Start nodes then
produce 〈{v}〉, 〈∅, {v}〉, 〈{v}, ∅〉 and 〈∅, {v}, ∅〉; Introduce nodes optionally
duplicate the first and last bags in which the new vertex v is to be put; and,
as before, Forget nodes do nothing. At Join nodes, bags in Sy and Sz are
repeated in all possible ways to bring Sy and Sz to the same length. After
merging the expanded bag sequences bag by bag, we eliminate repetitions
of consecutive bags. Since we aim for a finite number of characteristics that
is independent of n, we assume in the following that in a partial solution
Sx = 〈B̂i〉i no bag is repeated.

How do we achieve an equivalent computation with constant-size charac-
teristics? Looking for some kind of “compression”, we recall the interference
property of tree decompositions (Lemma 14): If, at two nodes y and z, par-
tial solutions Sy and Sz share vertices, the shared vertices are in the bag
Bx of the lowest common ancestor x of y and z. Thus, at x, only vertices
in Bx determine the compatibility of partial solutions at children of x, and

33

1 2

4 5 63

Bx

Gx

Figure 5: The reduction operation. The bags B̂1 = {1, 3, 4}, B̂2 = {1, 2, 4},
B̂3 = {2, 4, 5}, B̂4 = {2, 5, 6} of a path decomposition of Gx are projected to
B̄1 = {1}, B̄2 = {1, 2}, B̄3 = {2} (B̂3 and B̂4 both map to B̄3).

the size of Bx is bounded by k + 1. Consequently, to form one part of the
characteristic Cx of Sx = 〈B̂i〉1≤i≤m, we eliminate from Sx all vertices not in

Bx, getting 〈B̂i∩Bx〉1≤i≤m, and from this sequence we discard repeated sets,

arriving at 〈B̂ij ∩Bx〉1≤j≤m′ =: 〈B̄j〉1≤j≤m′ (see Figure 5). We call 〈B̄j〉1≤j≤m′

a reduced bag sequence. Thanks to the removal of equal contiguous sets, the
length of such sequences is bounded by 2k+3: for k = 0 the bound is 3, and
extending a reduced sequence by one vertex, we can duplicate at most two
bags, so incrementing k means increasing the length bound by 2. Each of up
to k+1 vertices occurs in some bag for the first time, and in some other bag

for the last time; hence there are at most
(

i
2

)k+1 ≤ i2k+2 ways of placing k+1
vertices into i bags, and by summing over i, it follows that there are at most
(2k + 3)2k+3 sequences 〈B̄j〉j, a number independent of n. Also note that
〈B̄j〉j is a path decomposition of Bx—this will be an important invariant of
the final characteristic.

Can reduced sequences 〈B̄j〉j themselves serve as characteristics Cx? Not

quite. Going from Sx = 〈B̂i〉i to 〈B̄j〉j, we lose too much information about
Sx. Notably, we need to supplement the reduced sequences 〈B̄j〉j with infor-

mation about how full the bags were before 〈B̂i〉i was reduced to 〈B̄j〉j. We
argue that two simple variants of recording “bag utilization” with the reduced
bag sequences do not meet the requirements and show how a sophisticated
approach achieves the desired result. Storing with each reduced bag B̄j the

size of the largest original bag B̂i that was reduced to B̄j leads to incomplete
combination algorithms (see Sections 2.2 and 2.3 for a discussion of correct-
ness and completeness). Suppose at node x, the path decomposition Sx of Gx

34

a

b

c

d {a, b, c}

{a, b}

{b, c}

{b, c, d}

{b, c}

{b, c}

{b, d}

{d}{a}

Join

Start a Start d

Intro b Intro b

Intro c Intro c

Forget a Forget d

Figure 6: Example graph and tree decomposition

is characterized by a sequence 〈(B̄j, uj)〉1≤j≤m′ where uj ∈ N records the size

of the largest B̂i projected to B̄j. The envisaged combination procedure for
Join nodes x with children y and z considers only characteristics of children

Cy = 〈(B̄y,j, uy,j)〉1≤j≤my
and Cz = 〈(B̄z,j, uz,j)〉1≤j≤mz

with equal bag sequences, i.e., my = mz and B̄y,j = B̄z,j for 1 ≤ j ≤ my.
After setting mx := my, B̄x,j := B̄y,j, and ux,j := uy,j + uz,j − |B̄j|, it
discards all results Cx = 〈(B̄x,j, ux,j)〉1≤j≤mx

with any ux,j > ` + 1. This
procedure is correct because we can merge partial solutions Sy at node y
with characteristic Cy and Sz at node z with characteristic Cz to a path
decomposition Sx of Gx with characteristic Cx. Unfortunately, there are
partial solutions Sy and Sz that can be combined to a solution Sx but for
which the combination procedure does not yield a characteristic. Take for
example the graph with the tree decomposition of width 2 shown in Figure 6.
Characteristics of the left “Intro c” node need to cover the clique {a, b, c}
(Lemma 11), so they take the form

〈. . . , ({a, b, c}, 3), . . .〉

where the other reduced bags are proper subsets of {a, b, c}. Therefore at the
left Forget node, each characteristic will contain a pair ({b, c}, 3), as will every
characteristic at the Forget node on the right. Merging any characteristics
of the two Forget nodes at the Join node yields a pair ({b, c}, 3 + 3 − 2),
and the result is discarded, even though the underlying graph clearly has
pathwidth 2.

35

The shortcoming of storing the maximum utilization with each bag in the
reduced sequence is caused by the fact that G[{a, b, c}] has path decomposi-
tions whose restriction to BForget a = {b, c} contains not only bags {b, c} with
utilization 3 but also some with utilization less than 3, namely 2. Those
bags B̂i = {b, c} do have room to accommodate node d, but our approach of
only remembering the maximum utilization does not take this into account.
Instead, we might resort to the other extreme and store with each B̄j the

utilization sequence of bag sizes 〈|B̂i|〉i0≤i≤i1 for the bags B̂i with restriction

B̂i ∩ Bx = B̄j. While sufficient for showing correctness and completeness
of suitable combination procedures, the length of utilization sequences de-
pends on the size of the subgraph Gx and hence on n. However, let us first
prove that such “preliminary” characteristics of non-constant size are ad-
equate with regard to correctness and completeness. Later we will find a
compromise between size and information content and amend the following
proofs for the final form of the characteristic of a path decomposition.

3.3 Preliminary Characteristics

The “preliminary” characteristic of a path decomposition Sx = 〈B̂i〉1≤i≤m of
a subgraph Gx is computed as follows: We assume that consecutive bags in
Sx differ by exactly one vertex, otherwise we remove repeated bags and insert
new bags between bags that differ in more than one vertex. We set ui to the
size of B̂i and restrict B̂i to the bag Bx of tree node x. Proceeding from the
left to the right, we remove repeated equal sets B̂i ∩ Bx and build from the
corresponding ui = |B̂i| a sequence 〈uj,1, uj,2, . . . , uj,nj

〉, which is stored with

B̄j := B̂i ∩Bx, giving a characteristic

Cx = 〈(B̄j, 〈uj,1, uj,2, . . . , uj,nj
〉)〉1≤j≤m′

The steps of deriving a preliminary characteristic are shown in Figure 7, while
the operation of projecting a normalized bag sequence to Bx and constructing
the utilization sequences is depicted schematically in Figure 8.

To put the preliminary characteristics to work, we need to show how to
combine characteristics at the four different node types so that for each node
x and each partial solution Sx (a path decomposition of Gx with width at
most `) the characteristic Cx of Sx is built; moreover, for any computed Cx

there must be at least one Sx with characteristic Cx.

Start Nodes

A Start node x with vertex v has path decompositions 〈{v}〉, 〈∅, {v}〉, 〈{v}, ∅〉
and 〈∅, {v}, ∅〉—remember that we decided to discard repeated bags and to

36

arbitrary path decomposition Sx of Gx

adjacent bags differ, number bounded

adjacent bags differ in exactly one vertex

normalize

preliminary characteristic Cx of Sx

remove adjacent equal bags

determine bag sizesrestrict to Bx

build utilization sequencesremove adjacent equal bags

size independent of n length O(n)

Figure 7: Computation of “preliminary characteristic”

1 3 2 4 2

1, 3, 2 4 2

Figure 8: Example of deriving a preliminary characteristic. Vertices in Bx

are filled black, i.e., the characteristic is 〈(, 1, 3, 2), (, 1), (∅, 2)〉.

37

1, 3, 2 4 2

}

possible ranges forselected range for

}

2

3 5 241, 3, 2

4, 31, 3

2, 4, 31

5 24

5 4 sequences

possible

utilization

Figure 9: Inserting N into a preliminary characteristic

compensate for this restriction by adapting the combination procedures. The
corresponding set of preliminary characteristics is

Cx = {〈({v}, 1)〉, 〈(∅, 0), ({v}, 1)〉, 〈({v}, 1), (∅, 0)〉, 〈(∅, 0), ({v}, 1), (∅, 0)〉}.

Note that we have omitted the sequence brackets 〈·〉 for the utilization se-
quences to improve readability. There is a one-to-one correspondence be-
tween partial solutions and characteristics, which takes care of correctness (a
solution for each characteristic) and completeness (a characteristic for each
solution), hence Cx is a full set of characteristics at Start node x.

Introduce Nodes

Introduce nodes x with child y and introduced vertex v take each charac-
teristic Cy produced at y and iterate through combinations of adding v to
a range of bags in Cy (see Figure 9 for a depiction of this operation). The
first and last bags into which v is put are split into an inner copy with v and
an outer copy without v. Furthermore, the utilization sequences within the
range are incremented to reflect the new vertex; the utilization sequence of
each boundary bag is split in all possible ways into two utilization sequences,
which go with the two copies of the boundary bag. The sequence element
at which the split is performed is included at the end of the first sequence
and the beginning of the second sequence, and the sequence in v’s range is
incremented. Each resulting Cx must pass two checks in order not to be dis-
carded: All edges between v and some other node of the subgraph Gx must
be covered; otherwise, Cx is not a valid path decomposition of Bx and thus

38

cannot be a characteristic of a path decomposition of Gx. And secondly, none
of the utilization values may exceed the upper limit of `+1. Correctness and
completeness of this operation are proved by induction on the tree, taking
as induction hypothesis that correctness and completeness hold for the child:
For each Cx, there is a Cy from which Cx was constructed; by induction,
there exists a normalized Sy with characteristic Cy. By the definition of the
preliminary characteristic, there is a one-to-one correspondence between uti-
lization values ui in Cy and bags in the path decomposition Sy. Therefore
repeating two reduced bags in Cy and adding v to a range of reduced bags
induces an equivalent operation on Sy, yielding a sequence of bags that we
call Sx. In Sx, all edges of Gx are covered and vertices occur only in contigu-
ous ranges, either because of the corresponding property of Sy or because of
the way v was added. Hence Sx is a path decomposition of Gx. Moreover,
Sx obviously has characteristic Cx, which completes the proof of correctness:
For each characteristic Cx at x, there exists a path decomposition Sx of Gx.

To prove completeness, we must show that the characteristic of every par-
tial solution Sx is computed, given every characteristic at y. The restriction
of any Sx to Gy—formed by removing the new vertex v—is a partial solution
at y, which we call Sy. By the induction hypothesis, we know that the char-
acteristic Cy of Sy is computed at y. As outlined in Figure 10, we will show

combination at x

at x

Sx

Cx

has chr.

at y

Sy

Cy

has chr.

restriction to Gy
given

found by induction

occurence to be shown

Figure 10: The approach taken by the completeness proofs

that the combination procedure on input Cy will produce the characteristic
Cx of Sx. Without loss of generality, we may assume that in Sx, consecutive
bags differ in exactly one vertex. Removing v from the first bag in which it
appears makes this bag equal to its predecessor. Likewise, the last bag in
which v appears coincides with its successor when v is deleted. Thus Sy has
repeated bags at the beginning and at the end of the range into which v is
inserted to get Sx, but all other bags still differ in exactly one vertex. In the
characteristic Cy of Sy, these repeated bags get contracted, but none else.

39

The combination algorithm checks for all ranges of reduced bags whether
inserting v will cover all edges between v and other vertices in Bx, so it will
also consider adding v to from the first contracted to the last contracted bag.
For this choice of first and last bags, all edges will be covered because Sx

is a valid path decomposition. The combination algorithm then duplicates
the first and last bag, thus undoing the contraction, and inserts v into the
interior of the range. This gives the characteristic Cx of Sx and we have
shown the completeness of the Introduce node combination algorithm.

Forget Nodes

The combination algorithm for Forget nodes x with child y and forgotten
vertex v transforms characteristics Cy into characteristics Cx by removing
v from all bags in Cy, deleting repeated bags, and concatenating their uti-
lization sequences. Correctness: Given a characteristic Cx, there exists a Cy

from which Cx was constructed. By induction, there is a partial solution Sy

on Gy with characteristic Cy. Since Gx = Gy, Sy is also a partial solution of
Gx; hence for each Cx, there is a partial solution. As for completeness, we
follow again the outline of Figure 10; any partial solution Sx with character-
istic Cx is also a partial solution at y, hence the characteristic Cy of Sy = Sx

is computed at y. Performing the Forget node algorithm on Cy yields a
characteristic C̃x of Sx, and since characteristics are unique, C̃x = Cx.

Join Nodes

Let x be a Join node with children y and z; remember, Bx = By = Bz

for Join nodes. Combination of characteristics Cy and Cz at node y and z,
respectively, will only be attempted when their reduced bag sequences co-
incide. By the interference property of tree decompositions, vertices shared
by partial solutions Sy and Sz are in Bx, therefore utilization values be-
yond the size of the reduced bag in Cy and Cz refer to different forgotten
vertices and thus must be added. Even when the reduced bag sequences
of Cy and Cz are equal, the corresponding utilization sequences in Cy and
Cz do not necessarily have the same length. We can bring two utilization
sequences to the same length by repeating some of the utilization values.
This corresponds to repeating bags in partial solutions, an operation that
maintains the path-decomposition property. Each way of expanding every
pair of utilization sequences in Cy = 〈(B̄j, 〈uy,j,1, . . . , uy,j,ny,j

〉)〉1≤j≤my
and

Cz = 〈(B̄j, 〈uz,j,1, . . . , uz,j,nz,j
〉)〉1≤j≤mz

to the same length gives rise to a can-
didate Cx of a characteristic at x: Cx has the same reduced bag sequence
as Cy and Cz, and its utilization sequences are formed by summing the ex-

40

panded sequences of Cy and Cz element by element and subtracting the size
of the corresponding bag, which would otherwise be counted twice. Hence
we have

Cx = 〈(B̄j, 〈u∗y,j,1 + u∗z,j,1 − |B̄j|, . . . , u∗y,j,nj
+ u∗z,j,nj

− |B̄j|〉)〉1≤j≤my

where the sequences 〈u∗y,j,i〉1≤i≤nj
derive from 〈uy,j,i〉1≤i≤ny,j

by repeating el-
ements, and the 〈u∗z,j,i〉1≤i≤nj

from 〈uz,j,i〉1≤i≤nz,j
. If a candidate Cx has all

utilization values bounded by ` + 1, it is inserted into the output set and
discarded otherwise.

Let us consider the correctness of this algorithm: Given Cx, there are
characteristics Cy at y and Cz at z from which Cx was built. Let Sy and Sz be
the corresponding partial solutions, which exist by the induction hypothesis.
We can merge Sy and Sz by first repeating bags according to the expansions
of the utilization sequences, and then computing the pairwise union. The
resulting Sx is a path decomposition of Gx: each edge is covered, and each
vertex only occurs in a contiguous range of bags. Its width is bounded by `
since the utilization sequences accurately reflect the bag sizes in Sy and Sz.

To prove completeness, we start from any partial solution Sx, which can
be restricted to Gy and Gz giving partial solutions Sy and Sz. By induction,
the characteristics Cy of Sy and Cz of Sz are computed at y and z; the Join-
node algorithm combines them, creating as output a set of characteristics
C = {C̃x,i}i∈I , among which must be the characteristic Cx of Sx. Because
the restrictions of Sx, Sy, and Sz to Bx = By = Bz are identical, Cx, Cy, and
Cz have the same reduced bag sequences, so we only have to show that the
utilization sequences of Cx can be built by expanding and summing corre-
sponding sequences of Cy and Cz. Expansion is needed when Sx restricted
to Gy or Gz contains repeated bags, which are removed in computing the
characteristics Cy and Cz. The expansion of the utilization sequences that
corresponds to restoring the deleted repeated bags leads to a C ′x that accu-
rately reflects the bag sizes of Sx, hence Cx = C ′x ∈ C.

This completes the construction of combination procedures for computing
path decompositions of G of width at most ` using “preliminary” character-
istics. From the characteristic Croot at the root and from the characteristic
that was used at each other node to construct the characteristic of the parent,
we can derive a path decomposition Sroot of Groot = G by executing the insert
and merge operations that were imitated by combining preliminary charac-
teristics. Indeed, computing preliminary characteristics Cx instead of entire
partial solutions Sx, as on page 33, did not cause much change to the com-
bination algorithms because the relevant information for combination—the
structure of the restriction of Sx to G[Bx] and the original bag sizes—were

41

conserved in the characteristic. As we saw earlier, size and number of re-
duced bag sequences are independent of the number n of vertices in G, in
contrast to the utilization sequences, whose total length equals the number
of bags of the characterized path decomposition and is therefore linear in n.

We already observed that substituting the maximum utilization for each
utilization sequence falls short with regard to completeness. Since we require
that no characteristic being computed at the root node implies that the graph
has pathwidth greater than `, we have to find a way to reduce the size of
the characteristics without sacrificing completeness. Any attempt of going
from one utilization value to a fixed-length sequence—say three values, one
for the first element, the greatest element, and the last element of the actual
utilization sequence—is doomed as well: In the next section, we will give a
class T of Ω(2`) utilization sequences and show that to achieve correctness
and completeness, they must map to distinct compressed utilization repre-
sentations. However, with a fixed number of values in the range 0, . . . , `+1,
we cannot represent 2` objects. After this result of our own, we resume the
construction by Bodlaender and Kloks and show that representing arbitrary
utilization sequences by elements of T is sufficient and that the size of T is
in O(22`), that is, independent of the number of vertices n.

3.4 Compressing Utilization Sequences

In the following, U will denote the class of finite sequences of nonnegative
integers, which we call utilization sequences; U` stands for the U -sequences
with elements in the range 0,. . . ,` + 1. We define a subset T of utilization
sequences and its restriction T` to U`: The defining property of sequences
τ ∈ T is that between any two non-consecutive sequence elements, there is
an element that is either greater or smaller than both of them. For example,
〈1, 5, 3, 4〉 conforms to this condition, whereas 〈1, 3, 5, 4〉 does not because
1 ≤ 3 ≤ 5. Let us derive a bound on the number of such τ ∈ T`. For integers
0 ≤ u1 < u2 < . . . < us ≤ ` + 1, the sequence 〈u1, us, u2, us−1, u3, us−2, . . .〉
is in T`. There are 2`+2 − 1 ways to choose non-empty subsets {u1, . . . , us}
from {0, . . . , ` + 1}, and each choice leads to a different sequence, therefore
|T`| = Ω(2`). On the other hand, it can be shown that every T`-sequence that
starts with its minimum is of the above form, and every T`-sequence starting
with its maximum is of the form 〈us, u1, us−1, u2, us−2, u3, . . .〉. In every T -
sequence, either the maximum or the minimum occurs only once; if we split
a sequence at this hinge element so that it ends up in both parts, we get a
right part, which is in one of the forms above, and a left part, whose reverse
is in this form. Thus we have reduced counting the number of T`-sequences

42

to counting subsets of {0, . . . , `+1}. A detailed calculation leads to a precise
count of T` :=

32
3
4` − 2

3
= Θ(22`).

To see why in compressing utilization sequences of preliminary character-
istics, two sequences from T must never have the same compressed image, we
need to introduce a little apparatus. A sequence α ∈ U can be expanded by
repeating elements; expansions will be denoted by an asterisk, e.g., a possible
expansion of α = 〈1, 3, 2, 2, 5〉 is α∗ = 〈1, 3, 3, 2, 2, 2, 5, 5〉. Remember that
those numbers stand for bag sizes, and bags in a path decomposition can
be repeated without destroying the path decomposition; moreover, repeating
bags and utilization values is necessary in merging partial solutions and char-
acteristics. We write α ≤ β when α and β have the same length and each
element ai of α is at most as great as the corresponding element bi of β. We
extend ≤ to a partial order 4 on sequences of different length: α 4 β shall
hold if there exist expansions α∗ and β∗ of the same length with α∗ ≤ β∗.
Informally, α 4 β expresses that merging operations that work with β also
work with α. Equivalence with respect to the combination operations is con-
veyed by the equivalence relation ³: We set α ³ β if and only if α 4 β and
α < β. Actual merging is reflected in the addition operation; for expansions
of the same length, α∗+β∗ is the pairwise sum of the sequences, and α⊕β is
the set of the sums of all expansions of common length. One criterion of the
“quality” of a utilization sequence α is its maximum maxα, the value of its
greatest element. The maximum matters, for example, at Introduce nodes,
where a new vertex is added to a range of bags and we must ensure that the
maximal bag utilization does not exceed `+1. At Join nodes, the best fit of
two sequences with respect to the maximum utilization value is measured by

minmax(α⊕ β) := min{max(α∗ + β∗) : α∗, β∗ same-length expansions}

The following two lemmas help to establish that fixed-size utilization rep-
resentations cannot exist. We first claim that sequences α and β indistin-
guishable by minmax(· ⊕ γ) are equivalent and then argue that distinct
T -sequences are never equivalent; Theorem 19 summarizes the conclusion
that distinct T -sequences are distinguishable.

Lemma 17. Let α and β be utilization sequences. If for all utilization se-
quences γ, minmax(α⊕ γ) = minmax(β ⊕ γ), then α ³ β.

Lemma 18. For σ, τ ∈ T , σ ³ τ implies σ = τ .

Putting together the contrapositions of Lemma 18 and 17 yields

Theorem 19. For σ, τ ∈ T , if σ 6= τ , then there is a utilization sequence
γ ∈ U with minmax(σ ⊕ γ) 6= minmax(τ ⊕ γ). 2

43

Any compressed utilization sequence must contain information about the
maximum utilization of the represented utilization sequences, since this in-
formation is necessary to know whether at an Introduce node a vertex can
be inserted into the whole range of bags that have the same projection B̄j.
Only utilization sequences with the same maximum can map to the same
compressed representation; otherwise, for correctness, the greater of the val-
ues had to determine the maximum stored in the representation, defeating
completeness: The characteristic claims that less vertices can be added than
for which actually is room. Therefore Theorem 19 means that each element
of T` must be projected to a different representation, bloating their number
to Ω(2`), beyond the capacity of a fixed number of utilization values. Before
proceeding, we give proofs of the preceding lemmas.

Proof of 17. Let α = 〈ai〉i, A = maxα and γ = 〈A−ai〉i. Then minmax(α⊕
γ) = A. If minmax(β ⊕ γ) ≤ A, then β 4 α. Switching the role of α and β
yields α 4 β and therefore α ³ β. 2

Proof of 18. We show that there are expansions σ∗ and τ ∗ with σ∗ = τ ∗.
Undoing the repetition of values, we then get σ = τ . Let L := len(σ)+len(τ).
Note that

(1) because of σ ³ τ , we have σ∗ ³ τ ∗ for any expansions σ∗ and τ ∗,

(2) for expansions σ∗ = 〈s∗i 〉i and τ ∗ = 〈t∗i 〉i with

len(σ∗) = len(τ ∗) > L,

there must be positions where elements have been repeated both in σ∗

and τ ∗, i.e., there is an index i with si = si−1 and ti = ti−1.

We construct inequalities of expansions σi, τi,

σ1 ≤ τ1 ≤ σ2 ≤ τ2 ≤ . . . ≤ σj ≤ τj

invoking (1) repeatedly and expanding earlier σi, τi to the length of the latest
pair. By (2) we can assume that all σi, τi have length L. Eventually, equality
must hold because there is only a finite number of expansions of σ and τ of
length L. 2

We now move along to prove that representing utilization sequences with
a maximum of at most `+1 by T`-sequences yields a linear-time algorithm for
path decomposition. To do so, we introduce the projection τ : U → T , use
it to define the final characteristics, adjust the combination algorithms and
extend the correctness and completeness proofs. We have already seen that

44

6 2 5 3 0 0 8 1 8 8 1 2 9 2 1 3 6 1 3 9 4 7 7 8 0 1 7 2 3 1 6 8 1 1 7 3 4 1 3 2

1 0 0 2 3 3 2 8 1 3 7 7 3 2 9 5 1 5 8 9 8 8 9 6 8 0 2 5 3 3 1 0 6 5 7 2 6 8 3 1

Figure 11: Two utilization sequences and their T -projection τ(·) (bold). Note
that the ranges to be deleted are not uniquely determined.

α ³ β reflects one aspect of similarity between utilization sequences α and β,
namely, the behavior under minmax tests. We will show that α ³ β implies
that we can interchange α and β in any characteristic without sacrificing the
correctness or completeness of the combination algorithms. Hence we can
safely replace utilization sequences α by small representatives τ(α) of the
equivalence class [α]³. It is a natural choice to choose τ(α) from T , since
those sequences have been shown to be mutually inequivalent. Moreover,
we will see that for each α with maxα ≤ ` + 1, there is a τ(α) ∈ T` with
τ(α) ³ α. Therefore we can uniquely represent any valid utilization sequence
using T`.

For α = 〈ai〉i, τ(α) is defined by repeatedly deleting offending ranges of
elements in α until the definition of a T -sequence is met: While there are
indices i and j with i < j so that for all elements ak between i and j holds
min{ai, aj} ≤ ak ≤ max{ai, aj}, remove all elements between i and j (i.e.,
the ak with i < k < j, see Figure 11 for examples). Obviously, τ(α) ∈ T .
We can extend τ(α) to the length of α by repeating the greater boundary
of each deleted range, leading to a (τ(α))∗ with (τ(α))∗ ≥ α, so τ(α) < α.
Similarly, we can construct a lower bound (τ(α))∗ with (τ(α))∗ ≤ α, hence
τ(α) 4 α and τ(α) ³ α. As a side effect of this relation, we get that τ(α)
is well-defined: If α gets reduced by different deletions to σ ∈ T and τ ∈ T ,
then σ ³ α ³ τ , so by Lemma 18, σ = τ .

45

arbitrary path decomposition Sx of Gx

adjacent bags differ, number bounded

adjacent bags differ in exactly one vertex

normalize

remove adjacent equal bags

determine bag sizesrestrict to Bx

build utilization sequencesremove adjacent equal bags

characteristic Cx of Sx

size independent of n

length O(n)

compress using τ(·)

length independent of n

Figure 12: The final characteristic

As a compression operation, τ(·) is the last ingredient of the final char-
acteristic. Figure 12 shows how τ(·) fits into the procedure for computing
the unique characteristic of a partial solution Sx in the subgraph Gx of node
x; note that from now on, Cx will denote a final characteristic of a path
decomposition of subgraph Gx. Cx = 〈(B̄j, τj)〉1≤j≤m′ consists of a sequence
of reduced bags B̄j and T`-sequences τj with the essential information about

the sizes of the bags B̂i of Sx = 〈B̂i〉1≤i≤m that are reduced to B̄j. What
does Cx tell us about Sx? Every pair of consecutive utilization values tj,p,

tj,p+1 in sequence τj corresponds to a contiguous range of bags 〈B̂i〉q≤i≤q′ ,

which have intersection B̄j with Bx. About the sizes of those 〈B̂i〉q≤i≤q′ , we

know the precise number of vertices in the first and last bag: |B̂q| = tj,p and

|B̂q′ | = tj,p+1. Furthermore, due to τj ∈ T , the sizes of the bags between q
and q′ vary only between min{tj,p, tj,p+1} and max{tj,p, tj,p+1}.

46

3.5 The Final Characteristic at Work

By completeness, we previously understood that for any partial solution Sx

at a tree node x, the combination algorithm will compute its characteristic
Cx. To succeed in proving completeness with final characteristics, we need
to relax this requirement so that for any Sx, Cx does not need to be com-
puted, but there exists at least some “better” partial solution S ′x for which a
characteristic C ′x is computed at x. This is still sufficient to guarantee that
whenever a solution exists on the entire graph, a characteristic of one is really
found—indeed, it would suffice to prove that whenever a partial solution at
x exists, any characteristic at x is computed at all. Earlier we argued that
for utilization sequences, α 4 β implies that α can be used wherever β fits;
building on this, we write C ′x 4 Cx if Cx and C ′x have the same reduced bag
sequence and if for each reduced bag, the associated compressed utilization
sequences satisfy τ ′j 4 τj. In this case, C ′x subsumes Cx, and our new notion
of completeness means that for the partial solution Sx with characteristic
Cx, some C ′x with C ′x 4 Cx is computed; Figure 13 shows the impact on the
completeness proofs for combination procedures.

combination at x

at x

Sx

Cx

has chr.

<

C ′x

at y

Sy

Cy

has chr.

<

C ′y

restriction to Gy
given

found by induction

occurence to be shown

Figure 13: The revised approach for completeness proofs. Compared to Fig-
ure 10, the characteristics of the solutions are replaced by “better” charac-
teristics. The diagram shows the case where x has one child; for Join nodes,
there are accordingly two restricted solutions Sy and Sz.

With regard to the full set of characteristics, the consequence of the shift
is that full sets are no longer unique, though there still is a minimal full set.
Observe that if a combination procedure at some node x produces charac-
teristics C ′x and C ′′x with C ′′x < C ′x, we may in fact discard C ′′x . In contrast

47

to the preceding subsequent refinements of the characteristics, this is a prop-
erty of the entire (full) set of characteristics at a tree node x. Whether
redundant characteristics are eliminated at each node or not does not affect
the desired linear running time, because even without elimination, the num-
ber of characteristics is independent of n. However, redundancy in the full
set will be addressed in detail when we discuss the implementation of the
path-decomposition algorithm.

In the following, we will iterate one last time over the four tree-node types,
giving combination algorithms and proving correctness and completeness.
From time to time, it might be useful to skip ahead to Figures 18 and 20
on pages 61 and 63 to see how the combination algorithms work on concrete
characteristics.

Start and Introduce Nodes

Of the four node types, only Start nodes behave exactly as before: They
produce the four characteristics

〈({v}, 1)〉, 〈(∅, 0), ({v}, 1)〉, 〈({v}, 1), (∅, 0)〉 and 〈(∅, 0), ({v}, 1), (∅, 0)〉

whose utilization sequences are already T -sequences. No further work is
needed to show correctness and completeness. Note that we can do without
the first three characteristics, because every path decomposition building on
them can be extended to contain empty bags in front or in the back.

As for Introduce nodes x with child y, our approach is exactly as before:
For every input characteristic Cy = 〈(B̄j, τj)〉1≤j≤m′ ,

• we determine all possible ranges 〈B̄j〉q≤j≤q′ into which the new vertex
v can be put so that all edges between v and other vertices in Bx are
covered,

• split the boundary sequences τq = t1, . . . , tp and τq′ = t′1, . . . , t
′
p′ at all

positions i, i′ into

τq,left = t1, . . . , ti τq,right = ti, . . . , tp

τq′,left = t′1, . . . , t
′
i′ τq′,right = t′i′ , . . . , t

′
p′

• and increment the elements of the sequences associated with bags inside
the range of v.

48

Cy

Cx

Sx

2 1 2 4 3 1 2

2 1 2 4 5 4 2 1 2

Sy

introduce
operation

Figure 14: Example of deriving a partial solution at an Introduce node. The
chosen range for the new vertex N starts at the second bag of Cy and ends
at the third; at the second bag, the utilization sequence is split at 4, while
at the third, the split is performed at 1.

The steps lead to several

Cx = 〈 (B̄1, τ1), . . . , (B̄q−1, τq−1),
(B̄q, τq,left), (B̄q ∪ {v}, τq,right + 1), beginning,
(B̄q+1 ∪ {v}, τq+1 + 1), . . . , (B̄q′−1 ∪ {v}, τq−1 + 1), interior,
(B̄q′ ∪ {v}, τq′,left + 1), (B̄q′ , τq′,right), end of range
(B̄q′+1, τq′+1), . . . , (B̄m′ , τm′) 〉

and again we discard any Cx where the maximum of any τj exceeds ` + 1.
Splitting as well as adding constants to T -sequences gives T -sequences, so
the procedure maps final characteristics to final characteristics. Figure 14
shows an example of how we can reconstruct a partial solution Sx from a
characteristic Cx: We assume that at tree node y, we have a partial solu-
tion Sy for Cy (which is the characteristic from which Cx was computed).
We locate in Sy the two bags that correspond to the splits performed to get
from Cy to Cx, duplicate those bags and insert v into the range of bags that
correspond to the incremented utilization values. This yields a path decom-
position Sx of Gx; it has width at most `, which completes the induction
argument for correctness.

Now we start from some partial solution Sx at x and prove that the com-
bination algorithm computes a characteristic C ′x that subsumes the charac-
teristic Cx of Sx. We assume that in Sx, consecutive bags differ in exactly one
vertex. Let Sy be the restriction of Sx to Gy; by the induction hypothesis, we
know that at tree node y, either the characteristic Cy of Sy or some C ′y with
C ′y 4 Cy is computed. For preliminary characteristics, we had a one-to-one
correspondence between bags and utilization values, so that inserting v into

49

align

τ(·) τ(·)
<<

τ(·)

〈3, 2, 3, 4,4,5〉

〈3, 2,3,4,4,5〉

〈3, 2,5〉

〈3, 2, 3, 4〉,

〈3, 2〉,

〈3, 2〉,

〈5, 5, 6〉

〈3, 4, 5, 5, 6〉

〈3, 6〉

insert v

insert v

insert v

Figure 15: Moving misaligned insertion limits. The figure shows utilization
sequences of a solution and the corresponding T -sequence of its characteristic.
Note that the sequence element at the split position is repeated, and that
the T -sequence from Cy was split into two T -sequences in C̃x.

a partial solution had a counterpart in adding it to a characteristic and vice
versa. For the final characteristic, we have to specify what happens if the
utilization value of a boundary bag of the range of v in Sy is eliminated in Cy:
We change in Sy the range of v by moving in Sy any “misaligned” insertion
limit to the bag that corresponds to the next lower value in the compressed
utilization sequence (Figure 15). This results in splits where on both sides,
the utilization sequence is not greater than the corresponding sequence at
the old split position. Inserting v into the aligned range yields a partial so-
lution S̃x. For its characteristic C̃x, we have C̃x 4 Cx and on input Cy, the
combination algorithm does find C̃x (Figure 16). If Cy is produced at tree
node y, we are done; in general, however, merely a characteristic C ′

y with
C ′y 4 Cy is computed at y. Since C ′y 4 Cy, we can expand the compressed
utilization sequences in C ′y = 〈(B̄j, τj)〉1≤j≤m′ and Cy = 〈(B̄j, σj)〉1≤j≤m′ so
that for all j, we have τ ∗j ≤ σ∗j . Adding v to Cy induces a way of adding v
to the expansion of Cy and hence to the expansion of C ′y; adding v to the
expansion of C ′y induces a way of adding v to C ′y, yielding a characteristic

C ′x with C ′x 4 C̃x 4 Cx. This concludes the completeness proof for the
Introduce-node combination operation.

Forget Nodes

Forget nodes cause little trouble. Let x be a Forget node with child y, and
let v be the forgotten vertex. The combination operation for final character-
istics is a straightforward extension from the same procedure for preliminary
characteristics: We transform every input Cy to an output Cx

50

Sx Cx < C̃x S̃x
has chr. has chr.

misaligned way
of adding v to Sy

aligned way of
adding v to Sy

way of adding
v to Cy

induces ind
uce

s

align

— perform the insertion of v —

Figure 16: Outline of showing how for Sx with characteristic Cx, a C̃x with
C̃x 4 Cx is found that gets computed from characteristic Cy. Sy is the
restriction of Sx to Gy and Cy is the characteristic of Sy.

(1) by removing v from the reduced bag sequence,

(2) removing the two repeated bags,

(3) concatenating the corresponding compressed utilization sequences,

(4) and recompressing them.

For Cy = 〈(B̄j, τj)〉1≤j≤m′ where v is in the bags q through q′, Cx takes the
form

Cx = 〈 (B̄1, τ1), . . . , (B̄q−2, τq−2),
(B̄q−1, τ(τq−1 ◦ τq)), beginning,
(B̄q+1 \ {v}, τq+1), . . . , (B̄q′−1 \ {v}, τq′−1), interior,
(B̄q′+1, τ(τq′ ◦ τq′+1)), end of v’s range
(B̄q′+2, τq′+2), . . . , (B̄m′ , τm′) 〉

where ◦ stands for sequence concatenation and τ(·) is the projection to T .
Note that due to the normalization, B̄q−1 = B̄q \ {v} and B̄q′ \ {v} = B̄q′+1.
Now take any Cx produced at x from Cy at y. By induction, there is a
partial solution at y with characteristic Cy. Since Gx = Gy, this partial
solution is also a partial solution at x that has characteristic Cx. Thus we
have shown that the combination is correct; completeness relies on the fact
that for arbitrary utilization sequences α, β, γ, δ we have

α 4 β and γ 4 δ =⇒ τ(α ◦ γ) 4 τ(β ◦ δ). (∗)

51

Let Sx be the partial solution for which we want to show that a C ′
x at most as

great as the characteristic Cx of Sx is computed. Again, the restriction Sy to
Gy is just Sx itself; for Sy = Sx with characteristic Cy, we know by induction
that a characteristic C ′y with C ′y 4 Cy is found at y. “Forgetting” v from
both C ′y and Cy yields some C ′x and the Cx of Sx; by (∗), we have C ′x 4 Cx,
which proves the completeness of the Forget-node combination procedure.

Join Nodes

Finally, let us consider Join nodes. As usual, we denote the Join node by x
and its two children by y and z. With preliminary characteristics, we could
achieve completeness even though we only merged characteristics Cy and Cz

with the same reduced bag sequence. Since preliminary characteristics differ
from final characteristics only in the compression of the utilization sequences,
we maintain this restriction. Accordingly, we merely need to specify how
the T -sequences of Cy and Cz can be added to reflect the bag sizes of a
merged partial solution at x. The degree of freedom we have in merging
partial solutions Sy and Sz is repeating bags; the corresponding repetition of
utilization sequences maps utilization sequences α to expansions α∗. Merging
two bags of Sy and Sz is reflected in the utilization by adding their sizes
without counting shared vertices twice; merging utilization sequences αj and
βj associated with bag B̄j in all possible ways yields the sequences

(αj ⊕ βj)− |B̄j| =
{(

α∗j + β∗j
)

− |B̄j| : α∗j , β∗j same-length expansions
}

.

The utilization sequences in Cy and Cz are compressed and the utilization
sequences of Cx must be from T as well. In general, the sum σ ⊕ τ of
T -sequences contains elements that are not from T , but applying the com-
pression operation τ(·) to all elements of σ ⊕ τ appears to be a reasonable
approach to produce compressed sequences for characteristics at x. Thus,
from Cy = 〈(B̄j, σj)〉1≤j≤m′ and Cz = 〈(B̄j, τj)〉1≤j≤m′ , we let the algorithm
produce the characteristics

Cx = 〈(B̄j, ρj)〉1≤j≤m′ with ρj ∈ τ
(

(σj ⊕ τj)− |B̄j|
)

for 1 ≤ j ≤ m′. (∗∗)

Of course, every combination of choosing the ρj gives rise to one Cx, and all
Cx with max ρj > `+1 for any j are weeded out. To convince ourselves that
for a Cx thus computed, we can find a matching partial solution Sx, we rely
once more on the induction hypothesis that partial solutions Sy on Gy and Sz

on Gz with characteristics Cy and Cz exist. We derive instructions from Cx,
Cy, and Cz on how to merge Sy and Sz: Let αj and βj be the uncompressed
utilization sequences of Sy and Sz, so σj = τ(αj) and τj = τ(βj). Since

52

σj ³ αj and τj ³ βj, we can choose expansions σ∗j and τ ∗j that satisfy
σ∗j ≥ αj and τ ∗j ≥ βj. In σ∗j , we can identify each value in the sequence with
a bag of Sy of at most that size; the same holds for τ ∗j and Sz. By (∗∗),
we know that ρj originates from particular expansions σ+

j and τ+j of σj and
τj with ρj = τ(σ+

j + τ+j − |B̄j|); we would like to translate these expansion
steps to expansions of σ∗j and τ ∗j , because operations on the latter have a
counterpart in operations on bags of Sy and Sz. Therefore we compute σ∗+j

as in Figure 17 by repeating the expanded ranges of σ∗j just as the elements

σj

induces

σ+
j

σ∗j

σ∗+j

Figure 17: Imitating the sum expansion of σj with σ∗j .

of σj were repeated in producing σ+
j . By the same means, we expand τ ∗j to

τ ∗+j using the expansion from τj to τ+j as a model. Then we have

τ
(

σ∗+j + τ ∗+j − |B̄j|
)

= ρj,

which means that if we can construct a partial solution at x with utilization
sequences σ∗+j + τ ∗+j − |B̄j|, we have accomplished our goal. Through the
same expansions that take the σ∗j to σ∗+j , we expand Sy to S+

y with utilization
sequences α+

j satisfying α+
j ≤ σ∗+j . By the same means, we obtain S+

z with
utilization sequences β+

j , where β+
j ≤ τ ∗+j . Merging S+

y and S+
z bag by bag,

we get a path decomposition S̃x of Gx with utilization sequences

γj = α+
j + β+

j − |B̄j| ≤ σ∗+j + τ ∗+j − |B̄j|.

Clearly, we have nearly obtained the desired result—proving the existence of
a partial solution Sx with characteristic Cx—but we have to be a little careful
in concluding the argument. Looking closely, we see that so far we have only
proved that the sequences 〈σ∗+j + τ ∗+j − |B̄j|〉1≤j≤m′ dominate the utilization

sequences of S̃x; however, some of the compressed utilization sequences τ(γj)
might be strictly smaller than the corresponding ρj of Cx. To obtain an
Sx with utilization sequences σ∗+j + τ ∗+j − |B̄j|, we enlarge bags in S̃x that
are too small by taking vertices from larger neighboring bags. The resulting
Sx has characteristic Cx because it has the right reduced bag sequence and
compressed utilization sequences ρj = τ(σ∗+j + τ ∗+j − |B̄j|).

To recapitulate: we expand the compressed utilization sequences of Cy

and Cz to dominate the actual utilization sequences of Sy and Sz, and then

53

expand them further to reflect the way the compressed utilization sequences
of Cx were constructed. These expansions tell us how the bags of Sy and Sz

have to be repeated to produce a Sx with the given characteristic Cx.
To prove the completeness of the Join-node combination procedure, we

start from a partial solution Sx on Gx and show that the characteristic Cx of
Sx or a characteristic C ′x of some better partial solution S ′x is computed. By
the now familiar reasoning, we define Sy and Sz to be the restrictions of Sx

to Gy and Gz and let Cy and Cz be the characteristics of Sy and Sz; by the
induction hypothesis, the tree nodes y and z produce characteristics C ′

y and
C ′z with C ′y 4 Cy and C ′z 4 Cz. Our task is to exhibit a C ′x that on the one
hand is among the output of combining C ′y and C ′z, and on the other hand
satisfies C ′x 4 Cx. Writing C ′y = 〈(B̄j, σj)〉1≤j≤m′ and C ′z = 〈(B̄j, τj)〉1≤j≤m′

(Cy and Cz, and hence C ′y and C ′z, must have the same reduced bag sequence),
we know that there are, for each j, expansions σ∗j and τ ∗j so that σ∗j ≤ αj

and τ ∗j ≤ βj, where αj and βj are the uncompressed utilization sequences of
Sy and Sz. Since Sy and Sz are both restrictions of Sx, they have the same
number of bags; hence αj and βj have the same length, and we can add σ∗j
and τ ∗j element by element. Defining

ρj = τ
(

σ∗j + τ ∗j − |B̄j|
)

then will do the job; in other words, C ′x := 〈(B̄j, ρj)〉1≤j≤m′ will turn out
to be a characteristic at x that does get computed by our algorithm and for
which C ′x 4 Cx holds. When we recall that in the combination algorithm, the
candidates for the j-th combination sequence come from τ((σj ⊕ τj)− |B̄j|),
we see immediately that our C ′x will be produced as an intermediate result.
It might get rejected if its maximum utilization exceeds ` + 1, so proving
C ′x 4 Cx will not only establish that C ′x is a sufficient surrogate for Cx, but
also serves to bound the maximum of C ′x. Looking at how Sx results from
merging Sy and Sz, we see that the j-th uncompressed utilization sequence of
Sx is αj+βj−|B̄j|, which is lower bounded by σ∗j +τ ∗j −|B̄j|. The compression
step—projecting to T—preserves this inequality, i.e.,

σ∗j + τ ∗j − |B̄j| ≤ αj + βj − |B̄j|
=⇒ τ

(

σ∗j + τ ∗j − |B̄j|
)

4 τ
(

αj + βj − |B̄j|
)

,

therefore ρj is smaller than the corresponding compressed utilization se-
quence of Sx, or C ′x 4 Cx. As an aside, note that from the correctness proof
above follows that the ominous “better” partial solution with characteristic
C ′x really exists.

This concludes our description of the [BK96] algorithm for computing
path decompositions of graphs of bounded treewidth. Before we refine the

54

analysis and discuss our implementation, a few remarks on the construction
are in order:

Solutions can be computed by recursing on the tree and combining partial
solutions of the children by following the correctness proofs. To every
characteristic at the root, a solution with this or a smaller characteristic
can be found; nonetheless, enumerating all path decompositions given
all characteristics at the root requires further effort.

No Solution will be found when, at any tree node, no characteristic is com-
puted. By the completeness of the combination algorithms, this implies
that the graph does not have a path decomposition of width `.

Simplicity seems to be lacking in the overall construction of the algorithm.
However, we have argued in several places that the present level of
complexity cannot be avoided in interfacing to the tree-automaton tech-
nique: The reduced bag sequence is necessary to determine the ways a
partial solution can be extended and by Theorem 19, further compres-
sion of the utilization sequences is impossible.

3.6 Analyzing the Algorithm

How many final characteristics can there be? A characteristic consists of
a reduced bag sequence and a T`-sequence for each reduced bag; we know
exactly how many T`-sequences there are, but our earlier approximation of
the number of reduced bag sequences (on page 34) was rather coarse. To
refine it, we recall that consecutive bags B̂i and B̂i+1 of a normalized path
decomposition Sx = 〈B̂i〉1≤i≤m of the subgraph Gx at tree node x differ
in exactly one vertex. So do any reduced bags B̄j and B̄j+1, which result
from restricting the path decomposition to the bag Bx of tree node x and
removing consecutive equal sets. We determine by induction the number rk of
reduced bag sequences in which exactly k different vertices occur and in which
adjacent bags differ in exactly one vertex. For k = 0, there is one sequence,
which has length 1 and consists of the empty set, so r0 = 1. For k > 0, we
construct all sequences from the sequences with k − 1 vertices. These have
length sk−1 = 2(k− 1)+3, and there are

(

sk−1

2

)

+ sk−1 =
1
2
(s2k−1+ sk−1) ways

to choose the subrange for the k-th vertex, giving

rk =
1

2
(s2k−1 + sk−1)rk−1 =

1√
π
4k k! Γ

(

k +
1

2

)

55

where Γ(·) is Euler’s gamma function, which generalizes the factorial function
to arbitrary real arguments. The number Rk of reduced bag sequences over
a set of k + 1 fixed vertices then is

Rk =
k+1
∑

i=0

(

k + 1

i

)

· ri

Given a tree decomposition of width k and a desired pathwidth of `, the
number of different characteristics can be up to (T` is the number of T`-
sequences)

Ck,` ≤
k+1
∑

i=0

(

k + 1

i

)

· ri · T`
si

=
k+1
∑

i=0

(

k + 1

i

)(

1√
π
4i i! Γ

(

i+
1

2

))(

32

3
4` − 2

3

)2i+3

=
k+1
∑

i=0

(

k + 1

i

)

· 2Θ(i log i) · 2Θ(i·`)

= 2Θ(k log k+k·`).

Due to the requirement that consecutive bags differ in exactly one vertex,
the difference between the last and the first element of the T`-sequences of
consecutive reduced bags is 1; to get an asymptotic lower bound, we observe
that if we choose every second T`-sequence at will, the gaps can be filled with
simple T`-sequences; hence

Ck,` ≥
k+1
∑

i=0

(

k + 1

i

)

· ri · T`
dsi/2e = 2Θ(k log k+k·`).

Altogether, we obtain Ck,` = 2Θ(k log k+k·`). At every tree node, we have
to process at most Ck,` many characteristics, which can be combined using
table lookups in time proportional to the size of characteristics, Θ(k + `),
so, as promised, the entire algorithm will run in time 2Θ(k log k+k·`) · O(n) =
O(2poly(k,`) ·n). For a few concrete values of k and `, Table 1 shows how many
characteristics can arise at any tree node. The values shown do not represent
a loose upper bound—in a totally disconnected graph with an arbitrary tree
decomposition of width k, there really are Ck,` many characteristics at every
tree node when we try to compute a path decomposition of width `. However,
to dismiss the algorithm based on this evidence as completely impractical is

56

` = 1 ` = 2 ` = 3 ` = 4
T1 = 42 T2 = 170 T3 = 682 T4 = 2, 730

k = 1 R1 = 9 4.48 · 105 2.95 · 107 1.90 · 109 1.22 · 1011
k = 2 R2 = 112 2.81 · 108 7.52 · 1010 1.94 · 1013 4.99 · 1015
k = 3 R3 = 2,921 3.30 · 1011 3.58 · 1014 3.71 · 1017 3.82 · 1020
k = 4 R4 = 126,966 6.24 · 1014 2.73 · 1018 1.14 · 1022 4.69 · 1025

Table 1: Some values of the number of reduced bag sequences Rk, the number
of T`-sequences T`, and the lower bound on the number of characteristics Ck,`.
The number of vertices in a reduced bag sequence is k+1 and the maximum
of the utilization sequences is at most `+ 1.

premature for two reasons: The degenerate case just cited is actually very
easy to handle: if we pipeline the computation, then a single characteristic
at every node will suffice for finding a characteristic at the root. In gen-
eral, computing characteristics “on demand” improves the running time on
sparse graphs. Secondly, we already observed that many characteristics are
redundant because they are subsumed by smaller characteristics of “better”
solutions. The effect of these optimizations will be investigated in the fol-
lowing section.

3.7 The Implementation

We implemented the Bodlaender-Kloks path-decomposition algorithm by
substituting the definition of the characteristic and the combination algo-
rithms into the generic tree automaton “template” described in Section 2.4.
We preserved the generality of the algorithm by setting up the desired path-
width ` as a runtime parameter (as opposed to a compile-time parameter)
just as the input graph and tree decomposition. The width k of the tree
decomposition does not occur in the description of the algorithm nor in our
implementation—as a bound on the maximum bag size, it appears only in
the analysis of the algorithm. The parts of the resulting program specific to
path decomposition comprise data structures for

• utilization sequences,

• T -sequences,
• reduced bag sequences,

• characteristics of path decompositions, and

• partial solutions

57

as well as procedures for the combination of characteristics and of partial
solutions at the different tree-node types. The functionality of the data
structures and the algorithms used closely follow the description in the pre-
vious sections. In particular, partial solutions are merged by imitating the
correctness proofs.

Integer Sequences

Bag-utilization values (U -sequences) and T -sequences are implemented as
arrays of integers that support the following operations (α, β ∈ U , and σ, ρ ∈
T):
len(α) returns the number of elements in sequence α.

α[i] queries the ith element of α.

maxα returns the maximum of α; this takes time O(1) as the maximum is
maintained in a variable.

α + c adds a constant c ∈ N to all elements of α.

α⊕m β computes for all same-length expansions α∗, β∗, the pairwise sum
γ = α∗ + β∗, retaining only sums γ with max γ ≤ m. Not all expan-
sions are considered, but only those where at each position, either a
new element from α occurs in α∗ or a new element from β occurs in
β∗. The other sums of expansions, especially those of length greater
than len(α)+ len(β), are necessarily expansions of smaller sums, hence
superfluous for our purpose. The elements of α⊕m β are computed on
demand to allow pipelining with higher-level functions; elimination of
duplicates does not occur to avoid storing all previous sums.

τ (α) projects α to T using a straightforward quadratic-time algorithm.

τ (α⊕m β) projects the sum of U -sequences to T , thereby discarding dupli-
cates. This is a simple composition of the α⊕m β operation, τ(·) and a
set data structure. Merging T -sequences at Join nodes, i.e., computing

τ((σj ⊕ ρj)− |B̄j|),

can be implemented with the procedures presented so far if we omit
the elimination of redundant characteristics.

σ 4 ρ compares two T -sequences and determines whether σ and ρ are equal
or incomparable or which of σ and ρ is strictly smaller. The linear-time
algorithm employed originates from an idea by Hagerup [Hag98b].

58

τ∗(α⊕m β) supersedes the τ(α⊕mβ) operation by purging non-minimal T -
sequences from the output. This is achieved by computing the elements
γ ∈ α⊕mβ one by one and comparing τ(γ) against the list of previously
computed compressed sums. τ(γ) replaces an earlier greater sum, or
is discarded if an earlier smaller sum is found, or is appended to the
list if it is found to be incomparable to all list elements. Hence this
operation computes the minimum number of elements of

τ((σj ⊕ ρj)− |B̄j|)

necessary to ascertain the completeness of the Join-node combination
algorithm.

Computing Characteristics

The characteristic of a path decomposition of some Gx was defined as a list
of reduced bags with associated compressed utilization sequences. In our im-
plementation, we chose not to store a list of vertex sets for the bags; instead
we opted for a more compact representation by giving for each vertex the
number of the first and the last bag in which it occurs. Accordingly, a char-
acteristic consists of two lists, one of length at most |Bx| ≤ k + 1 containing
the vertex intervals and a list with the T -sequences, whose length equals
the number of bags in the reduced bag sequence. Although very convenient,
our representation is somewhat less efficient for computing solutions from
characteristics than the “implicit” representation given by Bodlaender and
Kloks.

Introducing new vertices thus means to add one vertex interval, adjust
the others to reflect the split, and to increment the T -sequences within the
new range. Forgetting a vertex amounts to deleting the corresponding in-
terval, accommodating the elimination of two bags in the other intervals,
and concatenating two pairs of T -sequences. Merging two characteristics
is performed by first comparing the lists of intervals—the reduced bag se-
quences must coincide—and then outputting all combinations of choosing
one T -sequence from

τ ∗((σj ⊕m ρj)− |B̄j|)
for every j and m = k + 1 + |B̄j|. For fixed input characteristics, all four
combination algorithms produce only incomparable characteristics: This is
evident for Start and Forget nodes, which yield only a single characteristic; for
Introduce nodes, we ensure this by never splitting at a sequence maximum—
it can be shown that only splits at maxima lead to redundant characteristics.
Characteristics computed at Join nodes are mutually incomparable by virtue

59

of the same property of the sets τ ∗((σj⊕mρj)−|B̄j|). However, in most cases,
the combination algorithm at a tree node is called for multiple combinations
of children characteristics; therefore it may happen that two different input
characteristics lead to the same output or to comparable characteristics. In
this event, redundant characteristics get optionally removed by the generic
framework.

Figures 18, 19 and 20 show some details of an exemplary path-decom-
position computation. To maintain coherence with the presentation of the
theory, the characteristics in Figure 20 have been converted to lists of pairs
of a bag and a T -sequence; so at the root,

〈(∅, 0 1), ({2}, 2 1 4), (∅, 3), ({4}, 4 2 3), (∅, 2 0)〉

represents a reduced bag sequence of an empty bag, followed by a bag with
the vertex labeled “2”, followed by an empty bag, a bag with vertex “4”,
and another empty bag. The first bag has the T -sequence 〈0, 1〉, the second
〈2, 1, 4〉, and so on.

Benchmarks

The benchmarks were run on a Sun Enterprise 10000 computer [Cha98],
where up to eight tests could be executed simultaneously on as many 333 MHz
Ultra-2 processors, which shared two gigabytes of main memory. The pro-
grams were written in C++ and compiled using the GNU C++ compiler. De-
tails about the software and the development environment are given in the
appendix.

Our test cases with a known upper bound on the pathwidth are created as
in Figure 21 by using paths and cacti as “skeletons” for `-tree constructions,
similar to the triangle construction in Chapter 1: We maintain a mapping
between tree nodes and (` + 1)-cliques in the growing graph; starting with
an (` + 1)-clique identified with an arbitrary node of the tree, children of
tree nodes get their counterparts in the graph by inserting one new vertex
and making it adjacent to all vertices of the parent’s clique except for one
vertex, which is chosen uniformly at random. Graphs with path skeletons
have pathwidth `: turning the (` + 1)-cliques into bags linked in the or-
der of construction, we get a path decomposition of width `. Furthermore,
these graphs are maximal in the sense that adding any new edge will in-
crease the treewidth and hence the pathwidth of the graph (Proposition 8).
Graphs generated from cacti have pathwidth at most ` + 1, because in the
tree decomposition of width `, bags of inner nodes can be replaced by two
consecutive bags of size `+ 2, yielding a path decomposition of width `+ 1.

From these graphs, sparser and less regular graphs are obtained by delet-
ing edges at random. The necessary tree decompositions were computed

60

using the algorithm from [ACP87], which offered acceptable performance for
the graphs that the path-decomposition algorithm could handle. Table 2
shows the effect of the different optimizations described earlier; Figures 22
to 29 show the performance of the fastest configuration of the final imple-
mentation. The following observations were made:

• Memory consumption rather than running time proved in many cases
to be the limiting factor. This is especially poignant for sparse graphs.

• Therefore it is of utmost importance to reduce the number of charac-
teristics produced at each tree node (Table 2).

• Figure 23 shows linearly growing worst-case running time for a large
number of samples; the experiments appear to indicate a constant of
ca. 30 s/node for ` = 2. As the test cases from Table 2 show, the
performance is often much better. To improve performance on sparse
graphs, a good heuristic would be to handle each connected component
separately.

• As expected, the time for computing solutions grows faster than linearly
(Figure 24); the results are inconclusive as to whether the bound is
quadratical as predicted by theory.

• There is no particular bottleneck in the program (Figure 22); the mem-
ory management would greatly benefit from a restriction of the values
of `—e.g., it would then be possible to store entire T`-sequences in
machine words instead of relying on dynamically allocated arrays.

• For ` = 2, the performance of the algorithm is acceptable. Beyond that,
practicality is questionable (Figure 29); it is likely that the Bodlaender-
Kloks algorithm cannot compete with the algorithms for the special
cases ` = 2, ` = 3, and ` = 4, such as the one by Sanders [San96].

0

1

2

3

4
5

6

78

9

2,4,6

4,6,9 0,2,6 2,4,52,4,81,2,4

4,7,8 2,3,8

Figure 18: Graph cactus2t-03.gml and the width-2 tree decomposition that
will be used in the following examples.

61

1,2,4

2,4

2,4

2,42,4

1,2

1

2,4

2,4,5

2,4

2

2,4

2,4,8

2,4,8

2,8

2,3,8

2,3

2

2,4,8

4,8

4,7,8

4,7

4

2,4

2,4,6

2,4,6

2,6

0,2,6

0,2

0

2,4,6

4,6

4,6,9

4,6

4

1

4

36

36

768

1

1

3

3

36

97

97

1

4

36

36

768

1

6

44

44

960

8700

5442

1

2

16

16

1

1

1

1

1

4

1

Figure 19: A tree decomposition of graph cactus2t-03.gml annotated with
the number of characteristics computed at every node. This tree decom-
position is the result of converting the tree decomposition from Figure 18
to the Start-Introduce-Forget-Join-node format; the bold numbers indicate
bags where the algorithm did not compute a full set of characteristics or did
not notice that it did.

62

2,4

2,4

2,4

2,4

2,4

2,4

2,4,8

2,4,8

2,4,8

4,8

4,7,8

4,7

4

2,4

〈(∅, 0), ({4}, 1), (∅, 0)〉

〈(∅, 0 1), ({2}, 2 1 4), (∅, 3), ({4}, 4 2 3), (∅, 2 0)〉

〈(∅, 0), ({2}, 1 2), (∅, 1), ({4}, 2 3 1), (∅, 0)〉

〈(∅, 0 1), ({2}, 2 1 3), (∅, 2), ({4}, 3 2 3), (∅, 2 0)〉

〈(∅, 0), ({2}, 1 3), (∅, 2), ({4}, 3 2 3), (∅, 2 0)〉

〈(∅, 0), ({2}, 1 2), (∅, 1), ({4}, 2 1), (∅, 0)〉

〈(∅, 0), ({2}, 1 3 2), (∅, 1), ({4}, 2 3), (∅, 2 0)〉

〈(∅, 0), ({2}, 1 2), ({2, 8}, 3 2), ({8}, 1), ({4, 8}, 2 3), ({8}, 2), (∅, 1 0)〉

〈(∅, 0 1), ({2}, 2 1), (∅, 0), ({4}, 1), (∅, 0)〉

〈(∅, 0), ({2}, 1 2), ({2, 8}, 3 2), ({8}, 1), ({4, 8}, 2), ({8}, 1), (∅, 0)〉

〈(∅, 0), ({2}, 1), ({2, 8}, 2), ({8}, 1), ({4, 8}, 2 3), ({8}, 2), (∅, 1 0)〉

〈(∅, 0), ({8}, 1), ({4, 8}, 2 3), ({8}, 2), (∅, 1 0)〉

〈(∅, 0), ({8}, 1), ({4, 8}, 2), ({4, 7, 8}, 3), ({7, 8}, 2), ({7}, 1), (∅, 0)〉

〈(∅, 0), ({4}, 1), ({4, 7}, 2), ({7}, 1), (∅, 0)〉

Figure 20: One path of the tree decomposition of cactus2t-03.gml an-
notated by the characteristics that lead to a solution (see the remarks on
page 60)

63

Figure 21: Generating test cases by “blowing up” paths and cacti. Simple
trees guide a 2-tree construction, yielding graphs with predictable bounds on
the pathwidth.

64

test 1 test 2 test 3 test 4 test 5 test 6 test 7 test 8

final, no compiler 4.1 s 3.9 s 3.3 s 5.7 s 327.5 s 106.2 s 3.0 s 5251.9 s
optimization 6 MB 5 MB 6 MB 6 MB 34 MB 13 MB 6 MB 242 MB

1.9 s 1.5 s 1.2 s 2.0 s 141.9 s 56.7 s 1.6 s 2454.2 s
final

6 MB 5 MB 5 MB 6 MB 34 MB 13 MB 6 MB 242 MB

no sum 2.0 s 1.5 s 1.2 s 2.0 s 138.6 s 51.6 s 1.7 s 4146.0 s
optimization 6 MB 5 MB 5 MB 6 MB 36 MB 14 MB 6 MB 328 MB

no split 2.8 s 1.6 s 1.5 s 2.4 s 161.4 s 65.5 s 1.7 s 4185.9 s
optimization 6 MB 5 MB 5 MB 6 MB 36 MB 14 MB 6 MB 340 MB

no redundancy 8.4 s 5.0 s 8.0 s 62.3 s 776.0 s 1278.5 s 12.1 s 4483.7 s
elimination 15 MB 8 MB 12 MB 33 MB F 1027 MB 80 MB 22 MB F 1028 MB

I 75 h
no caching

179 MB
N N N N N N N

no redundancy elim., 9.4 s 5.0 s 8.1 s 64.1 s 765.8 s 3373.0 s 19.2 s 5720.4 s
no sum opt. 17 MB 8 MB 13 MB 39 MB F 1027 MB 165 MB 33 MB F 1028 MB

F — tests that could not be completed due to memory exhaustion

N — tests that were not conducted

I — tests that were interrupted

T
ab

le
2:

T
h
e
eff

ect
of

th
e
variou

s
op

tim
ization

s.

65

test tree decomposition requested
case

graph
tree width pathwidth

1 2 2

2 3

3 3

4

3

3

5 2 2

6 2 2

7 2

8

2

3

Table 3: The test cases used for evaluating the optimizations.

66

Flat profile:

Each sample counts as 0.01 seconds.
% self
time seconds calls name
49.32 269.35 __mcount_internal
11.10 60.62 mcount
2.68 14.66 9743318 chunk_free
2.20 11.99 9754826 chunk_alloc
0.96 5.24 9743318 cfree
0.95 5.17 5439583 gen_array::clear
0.85 4.63 9754826 malloc
0.69 3.79 16714204 leda__access<pdc::chrctr::vinfo>
0.69 3.75 4594919 memory_manager::allocate_vector
0.66 3.60 27216762 dlist::entry
0.56 3.07 1884714 gen_array::gen_array
0.53 2.88 4594919 memory_manager::deallocate_vector
0.52 2.85 13229150 leda_array<char>::clear_entry
0.52 2.83 24739802 leda_access<char>
0.47 2.59 1798807 gen_array::init
0.47 2.58 3367102 lex_compare<leda_list<pdc::chrctr::vinfo> >
0.47 2.55 11168570 leda_array<char>::operator[]
0.47 2.54 7054689 compare
0.43 2.37 ___builtin_new
0.43 2.36 8928161 iseq::operator[]
0.43 2.34 10159550 dlist::first_item
0.42 2.31 8152263 ref<pdc::chrctr>::operator*
0.42 2.30 5883299 dlist::clear
0.41 2.23 14119442 leda_list<pdc::chrctr::vinfo>::contents
0.39 2.15 8422410 leda_create<char>
0.39 2.13 14413062 leda__access<char>
0.39 2.13 4474456 gen_array::~gen_array
0.37 2.01 14119442 leda_list<pdc::chrctr::vinfo>::inf
0.36 1.99 5687167 dlist::length
0.35 1.90 4704435 ref<pdc::chrctr>::discard
0.34 1.86 2124187 dlist::append
0.34 1.85 8928161 leda_array<char>::operator[]
0.33 1.81 11519 tree_automaton<pdc>::ta_join::iter::next1

Figure 22: Excerpt from a profile of test case 6 by the gprof utility. The
first two entries indicate that profiling incurred a 60% performance penalty;
they are followed by the memory management routines, and low-level LEDA

functions; from the algorithm proper, only some comparison function, and
the generic Join operation show up in this list. Even though similar results
were found with other test cases, these figures are to be treated with caution;
e.g., suppressing the inlining functions may have significantly distorted the
distribution of CPU cycles.

67

number of vertices n

ru
n
n
in
g
ti
m
e
[s
]

0

300

600

900

1200

1500

1800

�

�

�

�

�

�

�

18 26 34 42 50 58 66

Figure 23: Running time against growing graph size. For every n, 32 max-
imal pathwidth-2 graphs were generated by using a path as skeleton. Af-
ter randomly removing multiples of four edges, the time for computing all
characteristics was taken, always using the tree decomposition that derives
naturally from the construction of the maximal graph. The diagram above
shows for each n the greatest running time encountered.

number of vertices n

ru
n
n
in
g
ti
m
e
[s
]

0

200

400

600

800

1000

1200

�

�

�

�

�

� �

�
�

�

�

�

�

�

18 26 34 42 50 58 66

Figure 24: For the same experiment as in Figure 23, this figure shows the
maximum time for computing the first characteristic at the root (solid line)
and for computing a solution (dashed line) for each n.

68

number of vertices n

n
u
m
b
er

of
ch
ar
ac
te
ri
st
ic
s

0

1500

3000

4500

6000

7500

9000

�

�

�

�

�

�

�

18 26 34 42 50 58 66

Figure 25: Maximal number of characteristics at any tree node, plotted
against growing n (same experiment as in Figures 23 and 24).

Figure 26: The three maximal pathwidth-3 graphs used for investigating the
influence of graph density on the running time, and the same graphs with
ten edges removed at random. The results of this experiment are shown in
Figures 27 and 28.

69

20100

1e+06

100000

10000

1000

100

10

1

Figure 27: Running time against density of graph: From each of the three
graphs of Figure 26, one edge after the other was removed in random order
and after each deletion, a path decomposition was computed, using the tree
decomposition of the original graph. In the diagram, the number of deleted
edges is plotted against the time (in seconds) to compute all characteristics
at the root node. The number of characteristics grows roughly exponentially
with the number of deleted edges.

20100

10000

1000

100

10

1

0.1

0.01

Figure 28: Running time against density of graph: For the same experiment
as in Figure 27, the time for computing the first characteristic at the root and
the corresponding solution is shown. This benchmark remains inconclusive.

70

k = ` = 2 k = ` = 3
0.28 s 2.17 s

k = ` = 4 k = ` = 5
1267.93 s aborted after 127 h

Figure 29: Running time for fixed n and growing k and `.

71

Chapter 4

Tree-Decomposition Algorithms

In this chapter, we review algorithms for computing tree decompositions. As
input, these algorithms take a graphG and an integer k. IfG has treewidth at
most k, they compute a tree decomposition of G of width at most k; otherwise
they correctly state that G has treewidth greater than k. Building on such
a procedure, it is easy to find a tree decomposition of optimal width, for
example, by calling the procedure with k = 1, 2, . . . until a tree decomposition
is found. Using a tree-decomposition algorithm with time bound O(g(k) ·
nc)—i.e., one that exhibits the property of fixed-parameter tractability—and
imposing an upper bound on the treewidth, the running time for finding the
treewidth is O(nc).

While discussing the computation of tree decompositions, we will assume
that the input graph G is connected; for graphs with more than one con-
nected component, tree decompositions of the individual components can be
merged by linking the trees at arbitrary tree nodes. Section 4.1 provides
an important subroutine for many tree-decomposition algorithms. In Sec-
tion 4.2, we present tree-decomposition algorithms that rely on computing
separators and which culminate in Reed’s O(n log n) algorithm [Ree92]. Sec-
tion 4.3 is devoted to a different approach, by which Bodlaender [Bod96a]
succeeded in devising a linear-time algorithm for computing minimum-width
tree decompositions of graphs of bounded treewidth. In this chapter, we
maintain a theoretical perspective and lay the groundwork for Chapters 5
and 6, where we discuss issues of practicality.

4.1 Shrinking Tree Decompositions

We present in this section an algorithm for shrinking tree decompositions:
The algorithm takes as input a graphG, a linear-size tree decomposition (T =
(X,F), {Bx}x∈X) of width k, and an integer ` < k. It checks whether G has

72

treewidth ` and if so, computes a tree decomposition of width `. The running
time of the algorithm is O(2poly(k,`) · n), so for fixed k, the bound is linear in
the input size. Invented by Bodlaender and Kloks [BK96], the algorithm is an
essential constituent of Bodlaender’s linear-time algorithm [Bod96a], though
it is also needed for post-processing the output of procedures, such as most
of the algorithms presented in Section 4.2, which compute from scratch a
tree decomposition of constant but non-optimal width.

Shrinking tree decompositions is not straightforward. For example, we
cannot turn a tree decomposition of width k into a tree decomposition of
width ` by decomposing large bags locally and linking the resulting trees—
most of the time, it would not be possible to join the tree decompositions of
adjacent bags:

�

Nevertheless, the problem fits into the framework from Chapter 2 for solving
problems on graphs of bounded treewidth. By plugging characteristics and
combination procedures into the generic algorithm, we solve the problem not
so much by taking a wide tree decomposition as a starting point for a shrink-
ing process, as by using the wide tree decomposition as a guide in computing
a narrow tree decomposition from scratch. The algorithm by Bodlaender
and Kloks can be thought of as an extension of the path-decomposition al-
gorithm presented in Chapter 3: computing tree decompositions via a tree
automaton is a generalization of computing path decompositions this way,
and we will be able to transfer many of the earlier results. From the projected
time bound O(2poly(k,`) ·n), we see that the running time at each node of the
tree automaton should again be independent of n; therefore the maximum
number of characteristics at any tree node must not depend on G.

The Characteristic of a Tree Decomposition

Recall that at a tree node x, the characteristic of a path decomposition
〈B̂i〉1≤i≤m of the subgraph Gx was made up of two constituents: the reduced

bag sequence 〈B̄j〉1≤j≤m′—the projection of 〈B̂i〉1≤i≤m to the bag Bx at tree
node x, with repeated bags removed—and compressed utilization sequences

73

2,3

3

3

2

22

2

3

2

3

3

Figure 30: The characteristic of an exemplary tree decomposition. Black
vertices are in Bx, white vertices in Gx \ Bx; the characteristic of the tree
decomposition on the left consists of the trunk on the right whose edges are
annotated with path-decomposition characteristics.

associated with each reduced bag B̄j, which convey the essential information
about what was lost in the projection. Likewise, the characteristic of a tree
decomposition Sx = (T̂ = (X̂, F̂), {B̂x̂}x̂∈X̂) of graph Gx is constructed by re-
stricting Sx to Bx, removing “repeated” bags, and annotating the restriction
with utilization values. Note that we follow again the convention of marking
components of partial solutions by a hat (ˆ) and parts of characteristics by a
bar (¯), while leaving objects of the backbone tree decomposition unmarked.

Let Sx = (T̂ = (X̂, F̂), {B̂x̂}x̂∈X̂) be a partial solution at tree node x; we
now develop the definition of the tree-decomposition characteristic Cx of Sx.
To simplify the reuse of the path-decomposition procedures, we proceed as
follows to create a (tree-)trunk T̄ to which we can affix characteristics of path
decompositions (see Figure 30). We reduce T̂ to T̄ = (X̄, F̄) with X̄ ⊆ X̂,

(1) by repeatedly removing leaves x̂ for which B̂x̂∩Bx is a subset of B̂ŷ∩Bx

at the single neighbor ŷ, and

(2) by removing all nodes x̂ of degree two and making their neighbors
adjacent.

The first reduction rule is necessary to bound the size of T̄ , whereas the sec-
ond rule removes chains of nodes, which we plan to treat differently: Every

74

edge ē = (x̄, ȳ) in T̄ can be associated with the path from x̄ to ȳ in T̂ , and
we define P̂(x̄,ȳ) = 〈B̂x̄, . . . , B̂ȳ〉 to be the sequence of the corresponding bags

in the original tree decomposition. For any trunk edge ē = (x̄, ȳ) ∈ F̄ , P̂ē

is a path decomposition of a subgraph of Gx, and we let P̄ē be the path-
decomposition characteristic of P̂ē, so P̄ē = 〈(B̄ē,j, τē,j)〉1≤j≤m′ consists of the

sequence 〈B̂x̄ ∩ Bx, . . . , B̂ȳ ∩ Bx〉 with repetitions removed and the corre-
sponding compressed utilization sequences. Labeling the trunk edges with
these path decompositions completes the construction of the tree decomposi-
tion characteristic Cx = (T̄ = (X̄, F̄), {P̄ē}ē∈F̄). Note that again we have the
invariant that inserting the reduced bags into the trunk—i.e., building the
tree of bags that results from substituting the reduced bag sequences for the
trunk edges—gives a tree decomposition of bag Bx; furthermore, the path
decompositions at edges that share an endpoint, share the last bag and the
last element of the compressed utilization sequence of the last bag. However,
there is a characteristic in which the trunk T̄ does not have any edge at all—
such a characteristic Cx at node x with a degenerate trunk represents all tree
decompositions of Gx where all vertices of Bx occur in some bag: in this and
only this case, reduction rule (2) leaves only a single x̄ with bag B̂x̄ ⊇ Bx.

How many tree-decomposition characteristics are there? By reduction
rule (1), every bag B̂x̄ of a trunk leaf x̄ contains a vertex from Bx that is in
no bag B̂ȳ of any other trunk node ȳ ∈ X̄, ȳ 6= x̄. Since Bx is a bag of the
input tree decomposition and thus contains at most k+1 vertices, the trunk
T̄ can have at most k + 1 leaf nodes and hence at most 2k nodes in total.
Each of the at most 2k − 1 edges can be labeled with one of 2Θ(k log k+k·`)

characteristics of path decompositions (Section 3.6), implying a bound of

O
(

(

2O(k log k+k·`)
)2k−1

)

= 2O(k2 log k+k2·`)

on the number of characteristics and a bound of 2O(k2 log k+k2·`) · n on the
running time S(n, k, `). With a little more effort, it can be seen that the
number of characteristics is 2Θ(k2 log k+k2·`).

We can easily extend the partial order 4 from path-decomposition char-
acteristics to entire characteristics of tree decompositions: for tree-decompo-
sition characteristics Cx and C ′x shall hold Cx 4 C ′x if they have the same
trunk, so Cx = (T̄ = (X̄, F̄), {P̄ē}ē∈F̄) and C ′x = (T̄ = (X̄, F̄), {P̄ ′ē}ē∈F̄) and
if P̄ē 4 P̄ ′ē for all trunk edges ē ∈ F̄ . Since we are using T -sequences instead
of uncompressed utilization sequences, we aim again for the weaker kind of
completeness, where for each partial solution Sx with characteristic Cx, we
only require that a characteristic C ′x of a better solution S ′x with C ′x 4 Cx

is computed. This also permits us to transfer the elimination of redundant

75

characteristics from the path-decomposition case to the tree-decomposition
case.

Start Nodes

The combination algorithms are extensions of the corresponding procedures
for Pathwidth, except for the Start-node combination algorithm. At a
Start node x with Bx = {v}, partial solutions can have only the degenerate
trunk T̄ = ({x̄}, ∅), so that Cx = (T̄ , ∅) is the only characteristic generated
at x.

Introduce Nodes

At Introduce nodes x with child y and introduced vertex v, the input is a
characteristic Cy = (T̄ , {P̄ē}) of a partial solution Sy at node y (i.e., Sy is
a tree decomposition of Gy) and we are asked to compute all characteristics
Cx that stand for a partial solution Sx at x, where Sx is an extension of
Sy by the introduced vertex v. Essentially, the combination procedure will
construct all characteristics Cx that meet the utilization bound of `+ 1 and
which reduce to Cy when v is removed. However, it takes a little struggle to
make this explicit.

When we manipulate a path-decomposition characteristic P̄(x̄,ȳ) that is
part of a tree-decomposition characteristic Cx of a partial solution Sx, i.e.,

Sx = (T̂ = (X̂, F̂), {B̂x̂}x̂∈X̂),

Cx = (T̄ = (X̄, F̄), {P̄ē}ē∈F̄),

P̄(x̄,ȳ) = 〈(B̄(x̄,ȳ),j , τ(x̄,ȳ),j)〉1≤j≤m′ ,

we must bear in mind that some of the reduced bags B̄(x̄,ȳ),j may originate

from a subsequence of P̂(x̄,ȳ) = 〈B̂x̄, . . . , B̂ȳ〉 containing bags B̂ẑ where ẑ has

in T̂ a branch that gets eliminated by the reduction rules (1) and (2). In
Figure 30, the first inner bag from the top at the long edge is an exam-
ple of such a ẑ. Which operations on the partial solution Sx correspond to
inserting v into P̄(x̄,ȳ) using the Introduce-node combination algorithm for
path-decomposition characteristics? Let P̄ ′(x̄,ȳ) denote the result of such an
insertion; the correctness proof of the algorithm gave instructions on how to
repeat bags in P̂(x̄,ȳ) and where to add v so that the resulting P̂ ′(x̄,ȳ) has char-

acteristic P̄ ′(x̄,ȳ). So far so good, but what happens to the branches that were
cut off in deriving the characteristic Cx from Sx? We just attach them to ex-
actly one of the (possible) repetitions of ẑ, thus preserving the validity of the
tree decomposition with respect to vertices other than v. Similarly, merging

76

two path-decomposition characteristics P̄
(1)
(x̄,ȳ) and P̄

(2)
(x̄,ȳ) with the Join-node

combination algorithm induces an equivalent operation on the correspond-
ing P̂

(1)
(x̄,ȳ) and P̂

(2)
(x̄,ȳ), and we can reattach branches to the result without any

problem.
We begin the discussion of the Introduce-node combination algorithm for

tree-decomposition characteristics with the computation of characteristics Cx

that have the same trunk as Cy. If Cy has a degenerate trunk without edges,
Cx := Cy is a valid characteristic at x—meaning “all vertices of Bx in a bag in
some partial solution at x”—if |Bx| ≤ `+1. If the trunk of Cy has at least one
edge, we check to which reduced bags in path-decomposition characteristics
P̄ē the new vertex v can be added: all edges between v and other vertices
of Bx have to be covered, the bags containing v must be connected, and the
utilization limit `+ 1 must be respected. For each such legal way of adding
v, the compressed utilization sequences are split and updated accordingly.
Thus we get all characteristics Cx where the trunk coincides with the trunk
of Cy; correctness is immediate since paths in some Sy behave just like path
decompositions and, as argued above, truncated branches do not pose a
problem.

To obtain the characteristics Cx whose trunks differ from Cy, observe that
the trunk only changes when removing v from Cx leads to a trunk leaf whose
bag is a subset of the neighbor’s bag—this can only happen if v is in the
bag of the leaf, but in no other bag. Conversely, assume that all edges of v
are covered by putting it in a single reduced bag B̄ from any reduced bag
sequence in Cy. We create all possible decreasing chains of bags

〈B̄, B̄ \ {u1}, B̄ \ {u1, u2}, . . . , B̄ \ {u1, . . . , ur−1}, B̄ \ {u1, . . . , ur}〉

that start with B̄ and end with some subset B̄\{u1, . . . , ur} with all neighbors
of v in Bx; inserting v into the last bag of such a chain,

〈B̄, B̄ \ {u1}, . . . , B̄ \ {u1, . . . , ur−1}, (B̄ \ {u1, . . . , ur}) ∪ {v}〉,

makes reduction rule (1) inapplicable, so that we can extend the trunk by a
new leaf ȳ, and associate the edge ē from ȳ to its neighbor with the path-
decomposition characteristic P̄ē formed by the bags of the chain and arbitrary
T -sequences τj with min τj ≥ |B̄ \ {u1, . . . , uj}| for 0 ≤ j < r, min τr ≥
|B̄ \ {u1, . . . , ur}) ∪ {v}|, and max τj ≤ `+ 1 for 0 ≤ j ≤ r:

P̄ē = 〈(B̄, τ0), . . . , (B̄ \ {u1, . . . , ur}) ∪ {v}, τr)〉.

If B̄ corresponds to a node x̄ in the trunk (i.e., it is a last or first bag of a
reduced bag sequence), we make ȳ adjacent to x̄, i.e., ē = (x̄, ȳ). Otherwise,

77

B̄ corresponds in some T̂ to a node x̂ that was removed by reduction rule
(2); we put a new x̄ corresponding to x̂ into the trunk; then we split the
T -sequence of B̄ at all possible places to create two path-decomposition
characteristics, which go with the two edges that replace the old trunk edge
“through x̂”. We attach P̄ē to e := (x̄, ȳ) as before and have syntactically a
characteristic Cx. If Cy has a degenerate trunk, we create characteristics Cx

by setting B̄ = By and applying the same construction.
Given such a Cx and a partial solution Sy at y with the input characteristic

Cy, we can easily identify the bag in Sy that corresponds to B̄ and add the
same chain to it. Since in Gx, v can have only edges to other vertices from Bx

(and by Lemma 14 not from Gx\Bx), all edges are covered and v only occurs
in a connected subgraph of the tree decomposition. Such a Sx evidently has
characteristic Cx, hence the algorithm behaves correctly in the case of a trunk
extension.

Let us address completeness: given a partial solution Sx, which has char-
acteristic Cx, we have to show that a characteristic C ′x with C ′x 4 Cx is
computed by the presented procedure. By the induction hypothesis, we get
a characteristic C ′y from y that is smaller than the characteristic Cy of the
restriction Sy of Sx. Inasmuch as C ′y 4 Cy, they are comparable and hence
have the same trunk and reduced bag sequences. So if we can show that
v can be added to Cy yielding Cx, then v can be inserted into C ′y in the
same way—splits of T -sequences σ in Cy are imitated by the corresponding
T -sequence τ in C ′y by first building the common-length expansions σ∗ and
τ ∗ with τ ∗ ≤ σ∗, and splitting τ ∗ at the, say, leftmost position where the
split element from σ occurs in σ∗. Obviously, the C ′x constructed this way is
smaller than Cx.

We conclude the proof of completeness by showing that on input Cy, the
combination algorithm indeed outputs Cx. Going from Sy to Sx, where can v
appear? If Cx and Cy have the same trunk, the completeness of the introduce
operation for path-decomposition characteristics guarantees us that the T -
sequences of Cx or smaller ones really are computed. If the trunks of Cx and
Cy differ, then v can only occur in the path-decomposition characteristic of
a single new edge in the trunk; the combination algorithm finds all possible
nodes in the trunk of Cy to which the new node can be joined, and labels
the new edge with all possible path-decomposition characteristics.

Forget Nodes

Let x be a Forget node with child y and forgotten vertex v. Each character-
istic Cy at y gives rise to one characteristic Cx at x: v is removed from all
path-decomposition characteristics and then the reduction rules (1) and (2)

78

are applied again to shrink the trunk where necessary, concatenating reduced
bag sequences and concatenating and recompressing the T -sequences of the
boundary bags. For every such Cx, there is a Cy from which it originates
and by the induction hypothesis, there is a partial solution Sy at y with
characteristic Cy. Clearly, Sx := Sy has at x characteristic Cx, which proves
correctness. Given an Sx with characteristic Cx, we show that a C ′x with
C ′x 4 Cx is computed: At y, Sy := Sx is a partial solution with character-
istic Cy. By induction, a C ′y with C ′y 4 Cy is found; since C ′y and Cy are
comparable, they have the same trunk and the same reduced bag sequences.
So “forgetting” v from both C ′y and Cy results in some C ′x and the charac-
teristic Cx of Sx. They satisfy C ′x 4 Cx, and since C ′x is the output of the
combination algorithm on input C ′y, completeness is proved.

Join Nodes

Merging characteristics Cy and Cz at Join node x with children y and z can be
largely reduced to merge operations on path-decomposition characteristics. If
Cy and Cz differ in their trunks or reduced bag sequences, no characteristic
Cx is produced. Otherwise, the path decompositions at each edge of the
trunk are combined individually and every way of choosing one merged path-
decomposition characteristic at each edge yields one characteristic Cx at x—
the trunk of Cx is that of Cy and Cz. If Cy and Cz have a degenerate trunk,
the characteristic with a degenerate trunk is produced at x if |Bx| ≤ `+ 1.

The correctness and completeness proofs profit from the fact that pairs
of path decompositions are combined independently. Given a characteristic
Cx computed at x, we construct a solution Sx with this characteristic: By
induction, there exist partial solutions Sy and Sz with characteristics Cy

and Cz, respectively. The paths corresponding to path decompositions P̄ē at
trunk edges ē are merged like path decompositions, except that in repeating
bags, branches attached in Gy \By or Gz \Bz are not repeated. The resulting
Sx is a partial solution at x and has characteristic Cx.

As for completeness, we are given, as usual, some partial solution Sx and
want to exhibit a characteristic C ′x that is at least as good as the character-
istic Cx of Sx and which gets computed from some C ′y and C ′z in the full sets
of characteristics at y and z, respectively. Restricting Sx to Gy and Gz gives
partial solutions Sy at y and Sz at z; to their characteristics Cy and Cz, char-
acteristics C ′y 4 Cy and C ′z 4 Cz are computed by the induction hypothesis.
The completeness of the path-decomposition join operation implies that at
each edge ē ∈ F̄ , a path-decomposition characteristic P̄ ′ē will be computed
from C ′y and C ′z that is smaller than the corresponding path-decomposition
characteristic in Cx. Labeling the trunk edges with these P̄ ′ē produces a char-

79

Bx Br

Gx

G \Gx

Gx \Bx

Figure 31: Removing the vertices of bag Bx separates the graph into a compo-
nent G\Gx towards the root r of the tree decomposition and two components
in Gx \Bx.

acteristic C ′x 4 Cx. If the characteristic Cx of Sx has a degenerate trunk,
then Cy and Cz will have degenerate trunks as well. By the induction hy-
pothesis, Cy and Cz are computed at y and z, respectively, because there
is only a single characteristic with a degenerate trunk. All vertices of Bx

must occur in a single bag in Sx, so have |Bx| ≤ ` + 1 and the combination
procedure produces Cx.

Computing Solutions

Once a characteristic of a tree decomposition has been computed at the root
of the backbone tree decomposition, we can follow the constructions of the
correctness proofs to construct a tree decomposition of width `. The partial
solutions thus computed have size proportional to the number of vertices
of the respective subgraphs; therefore the tree decomposition at the root
has size O(n). Moreover, Bodlaender and Kloks show how to compute this
tree decomposition in time O(n) by using a suitable representation for path
decompositions. This completes our discussion of the algorithm for shrinking
tree decompositions; armed with this important subroutine, we now attack
the tree-decomposition problem proper.

4.2 The Separator Approach

An outstanding property of graphs of treewidth k is that they have small
separators . In a rooted tree decomposition (T = (X,F), {Bx}x∈X) of G =
(V,E) there is a bag Bx so that removing all vertices in Bx disconnects the
graph into a component G\Gx and several components in Gx\Bx (Figure 31).
Intuitively, choosing tree node x to be “near the center” of T means that

80

removing Bx decomposes G into parts of balanced size. Indeed, if we define
a balanced separator to be a set of vertices S whose deletion from G leaves
components of at most 1

2
|V \ S| vertices, then G has a balanced separator of

size k+1: assume that for all adjacent tree nodes x and y we have |Bx\By| = 1
and |By \ Bx| = 1 and that all bags have size k + 1 (a tree decomposition
of this form exists because G is a partial k-tree, see Proposition 7). Every
inner tree node of such a tree decomposition disconnects G; we start at any
inner x and check for each neighbor y of x whether removing By from G
gives more balanced component sizes than removing Bx from G. As long as
an improvement can be made, we repeat the procedure with this neighbor.
At termination, no more than 1

2
(|V | − (k + 1)) of the vertices can be in any

component. It can also be shown that in any graph of treewidth k, there
exists a vertex set of size k whose removal leaves components of size at most
2
3
(|V | − k) (see [Bod96b] for an overview of the relations between different

kinds of balanced separators and treewidth).

So graphs of bounded treewidth have small separators, and some of those
separators are “central” bags of tree decompositions. A number of tree-
decomposition algorithms are based on this observation, among them the
ones described in [ACP87, Lag90, MT91, Ree92]. A näıve approach might
be as follows: Find a separator of size k + 1, recursively compute tree de-
compositions of each component, and glue the resulting tree decompositions
together using the separator as common root. The catch is that we have to
ensure that in each partial tree decomposition, the vertices of the separator
occur all in one bag; otherwise we have the same problem as when shrinking
tree decompositions by decomposing large bags locally. We will now look
into two ways of dealing with this issue.

The Algorithm by Arnborg, Corneil, and Proskurowski

Arnborg, Corneil, and Proskurowski [ACP87] obtained the first algorithm
algorithm for computing tree decompositions of width k with running time
polynomial in n by using dynamic programming on components of the input
graph G = (V,E). In a first stage, their algorithm determines all size-k
vertex sets Si ⊆ V whose removal disconnects the graph; many such (not
necessarily balanced) separators Si exist in every G of treewidth at most k,
since during the construction of a k-tree supergraph of G, every new vertex
v is made adjacent to all vertices of a k-clique K and deleting K disconnects
v from other vertices built on K. If Si coincides with such a K, then the
components of G[V \ Si] have treewidth k; the idea is to decompose them
by creating a table of all components of all separators {Si}1≤i≤s and to use

81

dynamic programming to determine the decomposability of the components
from the small ones up to the largest.

Let {Ci,j}1≤j≤ci
be the connected components of G[V \ Si] and Gi,j :=

G[Ci,j ∪Si]. If Si is the root bag of a tree decomposition, then for all 1 ≤ j ≤
ci, there exists a rooted tree decomposition of Gi,j with Si in the bag of root
ri,j . Conversely, if for some i, all Gi,j with 1 ≤ j ≤ ci can be decomposed in
this way, a tree decomposition of G can be constructed: create a new root
node r and a bag Br = Si, and for 1 ≤ j ≤ ci, link r to the root ri,j of the
tree decomposition of Gi,j. To find a tree decomposition of Gi,j comprising a
bag with Si, we create graphs G′i,j from Gi,j by making the subgraph induced
by Si complete; by Lemma 11, every tree decomposition of G′i,j will be a tree
decomposition of Gi,j with all vertices of Si occurring in some bag. For all i
and j, we submit (G′i,j, Si) to a list of subproblems.

When all Si have been found, there is a lot of overlapping to be expected
among the {G′i,j}i,j , and the trick is to exploit the overlaps by solving the
subproblems (G′i,j , Si) in the order of increasing size. If a G′i,j has size at
most k+1, it has a one-bag rooted tree decomposition; we attempt to cover
larger G′i,j with clique Si with a number of smaller graphs G′p,q that are
already known to be decomposable. In particular, we check for each v ∈
G′i,j \Si whether G′i,j can be covered by a family of decomposable subgraphs
{G′p,q}(p,q)∈D with separators Sp ⊂ Si ∪ {v} for all (p, q) ∈ D, so that the
G′p,q only overlap on Si ∪ {v}. In this case, we create a root ri,j and a bag
Bri,j

= Si ∪ {v}, and for each (p, q) ∈ D, we link ri,j to the root rp,q of the
tree decomposition of G′p,q. This yields a rooted tree decomposition of G′i,j.

We prove by induction on the size of the subproblems G′i,j that every G′i,j
of treewidth k will be decomposed: If G′i,j has size at most k + 1 the trivial
one-bag tree decomposition is found. Otherwise, let Si be the separator
that gave rise to G′i,j; since G′i,j is a partial k-tree, a k-tree supergraph
of G′i,j can be obtained by taking Si as the initial basis for adding some
vertex v and constructing k-trees {H`}1≤`≤m based on the k-cliques Ku =
(Si ∪ {v}) \ {u}, u ∈ Si. If Ku is used as basis for H`, then removing
Ku separates G. Hence there exists a p = p(`) such that Sp = Ku and a
q = q(`) such that G′p,q derives from H` by edge deletion. G′p,q is smaller
than G′i,j because it does not include u; by the induction hypothesis, it is
successfully decomposed. The {G′p(`),q(`)}1≤`≤m cover G′i,j and overlap only

on Si ∪ {v}, therefore the algorithm finds a tree decomposition of G′
i,j. If G

has treewidth at most k, then it is a subgraph of a k-tree with a basis Si that
separates G; we proved that a tree decomposition is found for each of the
connected components G′i,j and that these tree decompositions can be merged

into a tree decomposition of G. We have to consider
(

n
k

)

candidates for

82

separators, and for each candidate S, we have to do work of order n to check
whether removing S leads to more than one connected component. There
are O(n ·

(

n
k

)

) = O(nk+1) subproblems (G′i,j, Si), and potential covers can be
examined in time O(n) by using appropriate pointer structures. Therefore the
time complexity of the algorithm is O(nk+2). This is not quite as devastating
as it may appear at first, as we will see in Section 5.2.

Using Balanced Separators

We now return to balanced separators and introduce the framework under-
lying some of the more sophisticated algorithms for computing tree decom-
positions. When each component has size less than a constant fraction of
the original graph’s size, then using the procedure recursively on the compo-
nents leads to a recursion depth of O(log n). The best algorithm to date for
finding suitable separators has been discovered by Reed [Ree92], who shows
how to find “approximate” separators in time O(n). To beat his O(n log n)
algorithm, a new idea like the one presented in the next section appears to
be necessary.

Instead of adding edges to enforce that certain vertices end up in the same
bag, the notion of a W -separator will allow us to specify the treatment of
the distinguished vertices when the graph is cut. Given a graph G = (V,E)
and a vertex set W ⊆ V , we call S ⊆ V a W -separator if every component
of G[V \ S] contains at most two thirds of the vertices from W . In other
words, the component size is measured not by the total number of vertices
but by the number of vertices from W . The following theorem from [Ree92]
sets the stage for a procedure to compute a tree decomposition of width at
most 4k + 3 or to decide that the graph has treewidth greater than k.

Theorem 20.

(1) If G = (V,E) has treewidth k, then for any W ⊆ V , there is a W -
separator of size k + 1.

(2) If G contains for all W ⊆ V a W -separator of size k + 1, then G has
treewidth at most 4k + 3.

2

The first part of the theorem follows from the fact that either many vertices of
W are in a bag of some tree decomposition (choose that bag as W -separator
of order k + 1) or we can find a bag in the tree decomposition such that at
most half of the vertices of W are in any subtree. We prove the second part
constructively by assembling a recursive function that actually computes a
tree decomposition of width at most 4k + 3. With each invocation, we pass

83

as parameters a graph G and a vertex set W of size at most 3k+3 that must
be contained in a bag of the returned tree decomposition.

We start by calling a subroutine that computes a W -separator S; the way
S is computed is the distinguishing feature of the algorithms based on this
approach. If there is no W -separator, then by case 1 of the theorem, G has
treewidth greater than k. Otherwise, let Ci be the components of G[V \ S]
and let Gi := G[Ci ∪ S], i.e., the Gi are the different components including
their overlap S. Obviously, these are the graphs for the next recursion; the
Wi for the recursive invocations consist of the vertices that W shares with Gi

plus all of S, so Wi := (W ∩Gi)∪S. This is a reasonable definition since we
can link the bags with Wi to a new bag consisting of W ∪ S to combine the
tree decompositions of the subproblems; luckily, the size of Wi is bounded by

|W ∩Gi|+ |S| ≤
2

3
|W |+ (k + 1) ≤ 2

3
(3k + 3) + k + 1 = 3k + 3

and that of W ∪ S is bounded by

(3k + 3) + (k + 1) ≤ 4k + 4

These inequalities provide an explanation for the “magic” values for the
width 4k + 3 in Theorem 20 and the bound 3k + 3 on |W |. It can also be
seen that balancing the W -separators more precisely can get the bound on
the width close to 3k + 2, but not smaller. Hence we need to shrink the
output tree decomposition to the optimal width using one application of the
algorithm by Bodlaender and Kloks described in Section 4.1. Before we move
on, we recapitulate the significance of using W -separators instead of “plain”
separators. The latter do tear up the graph in suitably sized chunks, but
they fail to keep the separators of subsequent recursion levels close together
in the tree decomposition, so that S can serve both as a knot for the Gi and
as an interface to the other components of the graph at the next higher level.

4.3 The Algorithm by Bodlaender

A substantially different approach for computing tree decompositions was
discovered by Bodlaender [Bod96a]; our presentation is based on notes by
Hagerup [Hag98a]. The idea is to construct a recursive function that for
instances (G, k) with a graph G = (V,E) computes a tree decomposition of
G by calling itself at most once. If n = |V | is greater than some constant C
with C > k, the algorithm proceeds in four stages, namely,

(1) reducing the input to a smaller graph,

84

(2) recursively computing an optimal tree decomposition of the reduced
graph,

(3) patching the tree decomposition of the reduced graph into a non-
optimal tree decomposition of the input graph,

(4) applying the shrinking procedure from Section 4.1 to convert the non-
optimal tree decomposition into an optimal one.

This is to be the skeleton of a linear-time algorithm; reducing the graph
in step (1) and operating on the tree decomposition in step (4) requires
linear time per recursion step, so we must ensure that the graph is reduced
sufficiently in each step to guarantee that the total work remains linear.
Bodlaender meets this requirement by eliminating a constant fraction 1/d of
the vertices in step (1), so that there are O(log n) recursion steps and for a
bound of cn on the work per recursion step on a graph of n vertices, the total
work is bounded by

∑

i≥0 c (1/d)
i n = O(n). The key to the reduction step

is the observation that fusing pairs of adjacent vertices like this

allows a tree decomposition of the reduced graph to be transformed into a
tree decomposition of the original graph by replacing the new vertex by the
two old vertices in all bags. This gives a tree decomposition of the original
graph because all restored edges are internal to a bag, and all other edges
are covered as before; every vertex occurs in a connected component of the
tree of bags, since restored vertices occur in the same component as the fused
vertex. If fused vertices do not participate a second time in a fusion, then a
width-k tree decomposition of the reduced graph gives rise to a transformed
tree decomposition of width 2(k + 1)− 1 = 2k + 1.

Selecting pairs of adjacent vertices that can be fused simultaneously
amounts to computing a matching in G, that is, a set of edges M ⊆ E
in which no two edges share an endpoint. Finding many pairs can be done
by using a greedy algorithm to compute a matching M to which no further
edges can be added. Does such a maximal matching always have size O(n),
so that contracting all edges in M reduces the size of graph by a constant
fraction? It does not. In fact, we need to handle the case of a small |M |
separately. As contracting edges does not help for small maximal matchings
M , we resort in this case to another operation for reducing the size of the

85

graph. We try to identify vertices v in G that are leaves in the k-tree of
which G is a subgraph; “leaves” in the sense that none of the k k-cliques
that result from adding v during the construction of the k-tree is used to add
a further vertex. Such vertices v have the property that there exists a tree
decomposition of G where all of the (at most k) neighbors of v are contained
in a single bag. The idea is to remove v and augment the reduced graph
by auxiliary edges to enforce that the neighbors of v are in any width-k tree
decomposition of the reduced graph. When we have a tree decomposition of
the reduced graph, a new bag with v and its neighbors can be linked to the
bag containing the neighbors, thus getting a tree decomposition of G.

To make this work, we have to show that for small maximal matchings
M , a large number of leaf vertices can be identified. Vertices of degree
one certainly qualify as leaf vertices, and we can repeatedly remove degree-
one vertices until none remain. Since large matchings also benefit from this
reduction, we perform this elimination step before the computation of M .
We seek further vertices for which all neighbors occur in a single bag in all
tree decompositions of graph G. In Chapter 2, we presented two lemmas
that give sufficient conditions for vertices to occur together in a bag in any
tree decomposition: Lemma 11 postulated that every clique occurs in a bag,
irrespective of the size of the clique; and by Lemma 12, we know that for
vertex sets V1 and V2 ⊆ V that induce a complete bipartite subgraph of G,
we can find in any tree decomposition either a bag containing V1 or a bag
containing V2. The usefulness of Lemma 12 becomes obvious in the following
consequence:

Lemma 21. If u, v ∈ V have at least k + 1 common neighbors, then in any
tree decomposition of width at most k, some bag contains both u and v.

Proof. Vertices u and v on the one side and their common neighbors on
the other side induce a complete bipartite subgraph of G. By Lemma 12,
either u and v are in one bag, or their neighbors are. However, in the latter
case, we can add edges between their neighbors without destroying the tree
decomposition; in particular, we can turn them into a complete subgraph of
size at least k+1. Since u is adjacent to all of them, we actually have a clique
of size at least k+2, which contradicts the existence of a tree decomposition
of width k: by Lemma 11, a (k + 2)-clique would be contained in a bag. 2

The plan is this: We will use Lemma 21 to single out vertices whose neigh-
bors occur in a single bag in all tree decompositions of G, since such vertices
certainly are leaf vertices. Removing those vertices may add unwanted de-
grees of freedom to the neighbors, which we combat by adding new edges
to G and invoking Lemma 11. Remember that we are considering the case

86

of a small matching M ; we let U denote the set of endpoints of edges in M
and treat vertices in U as an immutable skeleton from which we try to pluck
vertices outside of U—note that the neighbors of any vertex w ∈ V \ U all
lie in U because M is a maximal matching. For the purpose of analysis, we
fix a rooted tree decomposition (T = (X,F), {Bx}x∈X) of G and give names
to the vertices outside of U : w ∈ V \ U is a bridge vertex if it has neighbors
u, v ∈ U that in the fixed tree decomposition do not occur together in any
bag; we call the pair {u, v} a witness for w. The other vertices from V \ U
are called internal vertices; for every pair {u, v} of neighbors of an internal
vertex, there exists a bag containing both u and v. Our goal is to identify
many vertices that are internal vertices in every tree decomposition of G.
We proceed as follows:

(1) Let A denote a table of integers indexed by unordered pairs {u, v} of
vertices from U ; in A[{u, v}] we count the number of common neighbors
of u and v that are in V \U ; we assume that A is initialized to contain
all zeroes.

(2) We step through all vertices w ∈ V \ U . If the degree of w is at least
2k, we ignore it. Otherwise, we consider all pairs {u, v} of neighbors of
w and increment A[{u, v}]. The cut-off value on the degree of w serves
to bound the running time; e.g., processing a w of degree ω(

√
n) takes

time ω(n), compromising the linear running time of one recursion step
and of the entire algorithm.

(3) We make a pass through A, adding an edge between each pair of nodes
{u, v} for which A[{u, v}] ≥ k+ 1. By Lemma 21, this does not invali-
date any tree decomposition of G.

(4) We step a second time through all w ∈ V \ U , again skipping vertices
of degree at least 2k. If for all pairs {u, v} of w’s neighbors we have
A[{u, v}] ≥ k + 1, then the neighbors form a clique because we have
added the necessary edges in (3). Knowing that the neighbors will stick
together in any tree decomposition, we check whether w has degree at
most k and remove it in this case. In the other case—if w has degree
greater than k and for all pairs of its neighbors holds A[{u, v}] ≥ k+1—
we have found a proof that the graph has treewidth greater than k.

Even a small maximal matching M can have size Ω(n). If implemented in
a straightforward manner, A therefore has size Ω(n2), so that initializing
and iterating over A would take time Ω(n2). It is easy to avoid initializing
A and to iterate only over non-zero entries, so we get a linear time bound.
Moreover, Bodlaender gives a slightly more complicated data structure that
manages with space O(n).

87

In a moment, we are going to take stock of how many vertices are left in
the graph. In anticipation of a constant reduction factor, we review the com-
plete algorithm: it eliminates degree-one vertices, finds a maximal matching,
and checks whether the matching is sufficiently large. If it is, contracting
the edges in the matching, invoking the procedure recursively, and expand-
ing the edges again gives a tree decomposition of width 2k + 1, which gets
narrowed down to width k using the shrinking algorithm. All these opera-
tions take linear time. If the matching is too small, we add some edges to G
and remove a number of vertices, recurse, and patch the previously deleted
vertices back. The second case, too, is of linear complexity, so the algorithm
computes tree decompositions in time linear in n = |V | for k fixed. We can
amend the algorithm not only to compute tree decompositions, but also to
decide Treewidth: If a graph has treewidth greater than k, then at some
level in the recursion the shrinking will fail, or a removable vertex has degree
greater than k, or the constant-size instance has treewidth greater than k.

To define the threshold size of M for branching into the first or the second
case of the algorithm as well as to analyze the influence of k on the running
time, we have to wrap up the argumentation for small matchings; then we
know the fraction by which the graph is actually reduced in each recursive
call. We bound the number of vertices left: We did not touch vertices in the
matching, therefore we need to count all of them. Defining m := |M | as the
number of edges in the matching, this accounts for |U | = 2m vertices. In
step (2), we skipped vertices outside of M of degree at least 2k. If in all of
G, more than half of the vertices had such a high degree, then G would have
more than nk edges, which by Proposition 8 is impossible.

After these bounds on the number of vertices we explicitly disregard, we
estimate the number of vertices that rightly or inadvertently get ignored in
step (4). Bridge vertices will never qualify for removal in step (4), because
their neighbors are in at least one tree decomposition in different bags, so
that Lemma 21 cannot be applicable. We assume that the tree decomposition
is rooted and again write T (v) for the subtree of T formed by the tree nodes
whose bag contains v ∈ V . Since T = (X,F) is rooted, T (v) has a well-
defined root r(v) ∈ X. For a fixed u ∈ U , consider the bridge vertices w with
witnesses {u, v} (for arbitrary v ∈ U) where w is in the bag Br(u) of the root
r(u) of T (u). Since Br(u) contains u, it can contain at most k bridge vertices
w; however, every bridge vertex must be in Br(u) for some u, hence there can
be at most |U |k = 2mk bridge vertices.

Internal vertices escape our scrutiny if their neighbors cannot be turned
into a clique. We count the number of docking locations in U for internal
vertices. Within one bag, there are at most

(

k+1
2

)

possibilities to connect to
two vertices. How many different bags can there be? We ignore bags that

88

are subsets of other bags and count the number of maximal bag sets with
respect to vertices from U . There can be no more than 2m maximal bag sets
since there are only 2m elements to start with. Therefore there are at most
2m
(

k+1
2

)

= mk(k + 1) ways to dock an internal vertex, and to overlook an
internal vertex, its docking location must not be used by more than k internal
vertices in total, leading to a bound of mk2(k + 1) on the total number of
undiscovered internal vertices. Our calculation is summarized below:

vertices in U : exactly 2m
high-degree vertices: at most n/2
bridge vertices: at most 2mk
overlooked internal vertices: at most mk2(k + 1)
total: at most m(k3 + k2 + 2k + 2) + n/2

We have traded one half the vertices of G against an expression depending
linearly on m. By solving

m(k3 + k2 + 2k + 2) =
n

4

for m, we get a threshold value of mt ≈ n/(4k3) to choose between the two
ways to shrink the graph. If the size m of the maximal matching M does not
exceed mt, then the reduction amounts to

m(k3 + k2 + 2k + 2) + n/2

n
≤ mt(k

3 + k2 + 2k + 2) + n/2

n
=

3

4
,

whereas if m > mt, contracting the edges of the matching reduces the size of
the graph by a factor of

n−m/2

n
≤ n−mt/2

n
= 1− 1

8(k3 + k2 + 2k + 2)
=:

1

d
,

that is, in both cases the factor is bounded away from 1 (1 > 1/d > 3/4).
Examining the individual computation steps once more, we see that each
step can be done in time O(kn+S(n, 2k+1, k)), where S(n, k, `) is the time
complexity of shrinking a tree decomposition of width k to width ` in a graph
with n vertices (see page 75). Altogether, this leaves us with a bound of

O

(

∑

i≥0

k
n

di
+ S

(n

di
, 2k + 1, k

)

)

= O
(

k3
(

k + 2O((2k+1)2 log(2k+1)+(2k+1)2·k)
)

· n
)

= 2O(k3) · n

89

on the running time of Bodlaender’s algorithm for computing tree decom-
positions. Even though our analysis is far from being tight, we clearly see
that the bottleneck is the shrinking of tree decompositions. Observing that
shrinking is only needed in the case of large matchings, we could bias the
algorithm towards treating more matchings as small by raising the threshold
mt. Furthermore, Bodlaender remarks in [Bod96a] that it is possible to trade
to certain extent the complexity in k against the complexity in n by restoring
the contracted edges of the matching M in multiple iterations. If in each bag
of the tree decomposition of the shrunken graph, only one fusion is reversed,
then the resulting tree decomposition has width at most k + 1—so we select
up to one edge in each bag, restore it, and shrink the resulting tree decompo-
sition of width at most k+1 to width at most k. We repeat these steps until
all edges have been restored. How many iterations are required? We cannot
always freely select one vertex in each bag to expand, therefore we will, in
general, need more than k + 1 iterations. Yet we can find a (k + 1)-coloring
of the expandable vertices in time I(n, k) = nk using a greedy algorithm
and extract from it an independent set of expandable vertices that has size
|M |/(k + 1). Since |M | = O(n) and we chop off a factor of k + 1 in each
iteration, O(log n) rounds suffice. The running time of this algorithm is

O
(

k3 log n (kn+ I(n, k) + S(n, k + 1, k))
)

= 2O(k3) · n log n,

but with smaller constants than before—in the shrinking subroutine, the
path-decomposition characteristics on the trunk edges now come from a set
of size Ck+1,k instead of C2k+1,k. Substituting k = 2 gives lower bounds
C3,2 ≥ 3.58 · 1014 as opposed to C5,2 ≥ 3.07 · 1022 (see also Table 1 on
page 57).

90

Chapter 5

Computing Tree Decompositions

5.1 Generating Test Cases

Evaluating the implementation of an algorithm means measuring the running
time on a large number of “uniformly” selected samples from “typical” inputs.
Since we set out without a specific application of tree decompositions, we
could not make any assumptions about the source of inputs. Therefore we
had to generate “random” graphs of a given size and a given bound on the
treewidth, so that we could investigate how tree-decomposition algorithms
compare on arbitrary input for various graph sizes and treewidths.

We begin our discussion on the generation of test cases with a few re-
marks on the selection of random inputs in general; we write In for the set of
binary representations of input objects of size n, assuming that every x ∈ In

has length O(n log n), i.e., x can represent O(n) numbers of magnitude O(n).
In most problems in computer science, several different input bit strings are
considered equivalent: for Sat, we pose essentially the same problem when
we rename variables or reorder the clauses of a CNF formula. Similarly,
in many graph problems, the order in which the vertices are listed in the
input is irrelevant, that is, isomorphic graphs constitute the same problem
instance. Formally, the set In is partitioned into equivalence classes [x] of the
objects y that are equivalent to x; choosing a random input of a given length
then amounts to selecting an equivalence class [x] uniformly at random and
returning an arbitrary y ∈ [x]. Graphs G1 = (V1, E1), G2 = (V2, E2) are
called isomorphic, if there exists an isomorphism σ : V1 → V2 such that
(u, v) ∈ E1 ⇔ (σu, σv) ∈ E2. The equivalence classes of general (labeled)
graphs under graph isomorphism are called unlabeled graphs; likewise, there
are unlabeled trees and unlabeled rooted trees, the latter with the isomor-
phisms restricted to leave the root vertex r invariant, σr = r. In Figure 32,
a representative of each unlabeled tree with four vertices is shown; Figure 33
lists the unlabeled rooted trees with four vertices. For these three types of

91

Figure 32: The unlabeled trees with four vertices.

Figure 33: The unlabeled rooted trees with four vertices (roots shown in
black).

unlabeled graphs as well as for labeled trees, there are efficient selection al-
gorithms [NW78, Wil81, Tin90], that is, given a source of random numbers,
these algorithms produce an arbitrary labeled graph (not always the same)
of an equivalence class that is selected uniformly at random.

As nice as such selection procedure may appear from a theoretical point
of view, judging the performance of an algorithm based on inequivalent test
cases entails a certain danger: an actual implementation is likely to depend
significantly on the order in which the input is presented. Even the [ACP87]-
algorithm (discussed in the next section), which iterates through all separa-
tors of the graph, shows deviations of almost 100% when the input graph is
permuted, as can be seen in Figure 34. Nevertheless, we did extend selection
algorithms for labeled trees and unlabeled rooted trees to produce labeled
k-trees and unlabeled “rooted” k-trees uniformly at random, assuming k and
the number of vertices n to be fixed. However, our results do not generalize to
partial k-trees, and due to their minor theoretical and practical significance,
we refrain from presenting our approach in detail; suffice it to say that there
is a bijection between a labeled k-tree G and a tuple (T,R, l) consisting of a
labeled tree T = (X,F), the specification of a “root” (k+1)-clique R and an
edge labeling l : F → {1, . . . , k}, which assigns an integer to every edge of

92

151050

180

160

140

120

100

80

60

40

20

0

Figure 34: The running time of the [ACP87]-algorithm for 16 random permu-
tations of the graph depicted in Figure 35. Error bars indicate the greatest,
smallest and average time for running the same instance multiple times; the
deviations are caused by transient changes in the operating environment and
are obviously negligible.

Figure 35: A graph of treewidth 3 for measuring the dependency on the input
order of the [ACP87]-algorithm

93

T . Because of this mapping, selecting a labeled k-tree uniformly at random
amounts to generating such a tuple uniformly at random.

By a unlabeled rooted k-tree, we mean the equivalence class of labeled k-
trees G under isomorphisms σ that map the vertices of a given (k+1)-clique
R in G unto themselves, i.e., σv = v for all v ∈ R; it can be shown that rep-
resentatives of every unlabeled rooted k-tree occur equally often in a certain
set of tuples (T,R, l) consisting of a representative T of an unlabeled rooted
tree, an arbitrary root clique, and an edge labeling l from a certain subset of
permitted edge labelings. Choosing such a tuple uniformly at random and
constructing the corresponding labeled k-tree then gives a representative of
a uniformly chosen unlabeled rooted k-tree.

Our “grut” package of graph utilities has programs for creating labeled
and unlabeled rooted trees uniformly at random, for creating random k-
trees using labeled trees as skeleton, for deleting a given number of edges
at random, and for randomly permuting the vertices of a graph. Further
information on this software is provided in Section A.1 in the appendix.

5.2 The Algorithm by Arnborg, Corneil, and Proskurowski

Only the first tree-decomposition algorithm described in the previous chap-
ter, the O(nk+2) procedure from [ACP87], can do without the Bodlaender-
Kloks shrinking algorithm. In spite of its enormous asymptotic bound, our
implementation of the [ACP87]-algorithm did work quite well for k = 2, and
meaningful results could be obtained for k up to 4. Figures 36 and 37 show
the results on a few benchmarks. The test cases were constructed by gener-
ating for each n three random unlabeled rooted trees with n− k nodes, and
using these as skeletons for random k-trees. From those “maximal” graphs,
edges were deleted in bunches of 10% of the k-tree’s edges, getting 11 test
cases from each of the three skeletons, or 33 for each n. The tests were run
on the same computer as the path-decomposition algorithm (see page 60),
but with limits on running time (30 minutes) and on the main memory (597
megabytes to allow three tests to run concurrently). The statistics in Fig-
ures 36 and 37 show for each n and k the greatest measurement—no entry
means that either for this choice of n and k, at least one test run violated
the limits or that all runs had too small running time to yield meaningful
measurements.

Except for interrupting the tabulating of subproblems as soon as a so-
lution is found and running the [ACP87]-procedure separately on each con-
nected component of the input graph, no further optimizations were imple-
mented; in particular, no bounds on k were assumed.

94

k = 5
k = 4
k = 3
k = 2

100908070605040302010

1000

100

10

1

0.1

Figure 36: Running time in seconds of the [ACP87]-algorithm for different
treewidths k, plotted against the number of vertices n.

k = 5
k = 4
k = 3
k = 2

100908070605040302010

1e+06

100000

10000

1000

Figure 37: Memory consumption in kilobytes of the [ACP87]-algorithm.

95

Chapter 6

Conclusions

6.1 Shrinking Tree Decompositions Is Not Feasible

The more advanced separator algorithms and Bodlaender’s linear-time algo-
rithm depend heavily on a procedure for reducing tree decompositions from
non-optimal bounded width to the minimum width. This procedure was
provided in Section 4.1 in form of the shrinking algorithm by Bodlaender
and Kloks, which is an extension of their path-decomposition algorithm for
graphs supplied with a bounded-width tree decomposition. In Chapter 3,
we analyzed this path-decomposition algorithm and found that the construc-
tion cannot be simplified much; because of its importance as a fundamental
building block of tree-decomposition algorithms, we put a large effort into
implementing it as efficiently as possible. Despite our quite significant im-
provements such as the elimination of redundant characteristics, pipelining,
and caching, our experiments led us to the conclusion that path decomposi-
tions of width greater than 3 cannot be computed using this approach even
for graphs of 16 vertices. The tree-decomposition shrinking algorithm makes
extensive use of the combination procedures for path-decomposition charac-
teristics; hence this algorithm, too, must be impractical for widths greater
than 3. Indeed, the number of potential characteristics grows even faster in
the case of reducing a tree decomposition from width k to ` than in comput-
ing a path decomposition of width ` from a tree decomposition of width k:
the asymptotic bounds on the number of characteristics are

2Θ(k2 log k+k2·`) · n and 2Θ(k log k+k·`) · n,

respectively. In Chapter 4, we derived a lower bound of 3.58 · 1014 for the
maximum number of different characteristics at a tree node when reducing
width-3 tree decompositions to width 2. This huge figure strongly suggests
that even a single call to the Bodlaender-Kloks shrinking procedure is not

96

feasible, much less repeated invocations as in Bodlaender’s linear-time algo-
rithm.

On the other hand, Sanders [San96] gives a linear-time algorithm for
computing tree decompositions of width 4 and he considers it to be practi-
cal; for widths below 4, simple graph-reduction algorithms were derived by
Arnborg and Proskurowski [AP86]. Hence we conclude that neither tuning
the separator-based tree-decomposition algorithms nor implementing Bod-
laender’s algorithm would extend the range of tractable problem instances
beyond the widths for which special-purpose algorithms exist.

6.2 Further Directions

We set out to investigate the practical value of tree-decomposition algo-
rithms of the most general type, which for any input graph G and any
requested width k compute a tree decomposition of width k or state that
the graph has treewidth greater than k. The sobering result is that com-
puting optimal-width tree decompositions is—with today’s algorithms and
computers—intractable for widths greater than 4 and graphs larger than, say,
16 vertices. We already mentioned that for each value of k up to 4, algorithms
based on graph reduction have been constructed; Sanders claims that despite
the need to differentiate between some one hundred special cases, there are
no large hidden constants in the analysis of his algorithm. However, even
if it were not practical, the algorithms for treewidth up to 3 certainly are;
only six rules for rewriting graphs suffice to define the graphs of treewidth
at most 3 as those graphs that can be rewritten to the empty graph.

It was beyond the scope of this work to implement algorithms for particu-
lar treewidths, not least because an efficient implementation would probably
not be straightforward. Moreover, once we deviate from our original objec-
tive of examining the practicality of general and complete tree-decomposition
algorithms, there are plenty of alternative ways to proceed. For certain real-
world applications, tree decompositions of non-optimal width might be ac-
ceptable or further knowledge about the input could be used to improve the
calculation of the bounds or to speed up the present algorithms or to devise
completely new algorithms. Moreover, in three-dimensional spring-embedder
layouts of dense k-trees, their “tree structure” appears to unfold (Figure 38),
and this observation might help to develop useful heuristics. All these ap-
proaches require a thorough analysis of the concrete application to identify
further properties of the problem at hand; the huge constants arising from
the general techniques of using tree decompositions lead us to the conclusion
that the generality of the treewidth theory makes it—without considerable
specialization—unusable in practice.

97

Figure 38: Snapshot of a three-dimensional “Virtual-Reality” rendering of a
3-tree. We have added a large grid for aiding orientation when navigating
through the graph using standard viewing software. Our implementation of a
spring-embedder layout algorithm and a program for translating graphs with
a layout into Virtual-Reality scenes are part of the “graph utilities” package
described in the appendix.

98

6.3 Comments on the Development Tools

The majority of the software developed as part of this work was written
in the C++ programming language [SE90] using LEDA, a library of efficient
data types and algorithms [MNSU98]. In this section, we address drawbacks
of this approach in the hope that our comments will be useful for future
experimental algorithm implementations. All things considered, we consider
C++ and LEDA to be among the best tools currently available, yet with much
potential for improvement. Joyner [Joy96] gives a comprehensive list of the
shortcomings of the C++ language in general; therefore we discuss only the
issues that arose in our programming with LEDA.

C++ Standardization

At the time of writing, the C++ standard (ISO/IEC 14882:1998) has been
officially approved for two months, though not yet published. Until the stan-
dardization effort, the C++ language evolved through extensions that the
inventors of C++ at AT&T Research Labs made to their cfront compiler,
extensions that were approximately copied by several compiler vendors. Dur-
ing the process of standardization, which started in 1989, significant changes
were made to the language, and subsequent drafts of the standard were fol-
lowed to a varying extent by the different compilers. Consequently, it appears
that the standardization of C++ led for many years to a less stable specifi-
cation of the language, and this will change only slowly as vendors catch up
with the final standard. Our programs written with LEDA were affected in
three ways by the evolution of the C++ language:

• Each compiler release with incompatible changes to the language ne-
cessitated the adaption of all source code. For example, the scope
of variable declarations in the for loop was changed from GNU C++
version 2.5 to 2.6, making the code in Figure 39 illegal, whereas previ-
ously, a redeclaration of i was considered to be an error. More obscure
changes, such as the abolishment of “guiding declarations,” the intro-
duction of the typename keyword, and modifications to the resolution
of overloaded functions (i.e., functions with the same name but different
argument types) caused compilation errors that were hard to diagnose.

• Releases of LEDA always supported the compiler versions that were
current at that time. As a consequence, there is usually only a small
range of compiler versions with which any given LEDA release works;
hence, the “C++ dialect” of our programs is largely determined by the
choice of the version of LEDA.

99

for (int i=0; i<10; ++i) {

// do something

}

for (i=0; i<10; ++i) {

// do something

}

Figure 39: Originally, variables declared in the head of a for loop belonged
to the surrounding scope, so the code snippet above was correct. In ISO
C++, however, i belongs to the scope of the body, so that it is undeclared in
the head of the second for loop.

• The ISO C++ standard defines classes for basic data structures such
as arrays, lists, and sets. The access to these structures using “STL
iterators” differs significantly from the “LEDA style” of using macros
such as forall. In the early stages of our implementation, LEDA did
not support the new style of accessing data structures, so that the
interoperability with the new standard library was limited. Moreover,
the LEDA style of enumerating elements was awkward to implement for
our own classes. It appears that in the current release, STL iterators
are, for the most part, supported.

C++ Compilation Speed

The great complexity of the C++ language is reflected by large compilation
times. As an example, recompiling after making a change to a certain source
file in the “tdecomp” project took well over half a minute on a SUN Ultra 1
workstation; this was with all compiler optimizations disabled. Even for
medium size test cases, compiler optimizations were highly desirable, but
enabling them increased the compilation time by a factor of three. When
changes involved header files, the delay was even greater because a header
file is usually included by several source files, each of which needs to be
recompiled.

Specifically, our criticism is that in C++, small changes often entail com-
pilation times that grow with the size of the project. The modification of
an inline function causes all clients of a class to be recompiled, even when
optimizations are disabled. The overhead of parsing library declarations is
reduced by some compilers using “pre-compiled headers”, yet one would ex-
pect the compiler to find out whether a change affects a class interface and
thus dependent classes, and only in this case to recompile the dependent
classes. However, C++ is designed towards only examining one source file at

100

a time, all but precluding project-global analysis.

Tracking and Copying Objects

The memory management of C++ turned out to be a substantial impediment
to implementing large algorithms efficiently. Consider the data structure for
characteristics of partial solutions in the generic tree-automaton algorithm
(Section 2.4). Combination procedures construct C++ objects representing
such characteristics; an object may get inserted into the cache of the current
tree node, or get passed to the parent of the tree node, or be stored with a
partial solution that is being generated. All in all, references to these objects
are kept in many places and not all objects are treated the same way; how-
ever, since space is a scarce resource for the path-decomposition algorithm,
we need to release the memory occupied by a characteristic soon after it is
not referenced anymore. The lifetime of the objects representing character-
istics is not determined by a static scope, so they need to be dynamically
allocated and dynamically freed. For dynamic memory management, C++
offers the new and delete operators, which normally allocate and release
memory using the C functions malloc and free. In other words, the pro-
grammer has to find out when an object is no longer used, and then call
delete. For objects with such “diverse” lifetimes as characteristics, this is
a difficult task; we were forced to count the references to each object and
dispose of it as soon as this count reached zero. Similar reference counters
are manually implemented in many places in current C++ libraries, such as
the GNU implementation of the ISO C++ string class and the LEDA classes
integer and rational. Nonetheless, this approach has two distinctive draw-
backs: circular references cannot be detected, and there is no uniform way
to implement reference counting. One way to furnish reference counting to
arbitrary classes is to design a reference template ref<class>, which behaves
like a pointer to an object of class class, but calls delete on the object when
the last ref<class> reference to it is discarded. This approach fails due to
clashes with the type system of C++; for instance, there is no way to make
ref<parent> a superclass of ref<child>. Analogous obstacles rule out solving
the problem by bequeathing classes with a reference counter from an ances-
tor class refcountable and, in any case, the programmer cannot be forced
to handle “raw” pointers correctly.

When using LEDA—or, for that matter, any other library of data struc-
tures—the lack of a garbage collector leads to redundant copying of objects:
Inserting a large object, such as the representation of a characteristic, into a
LEDA list causes the object to be copied into the set; LEDA cannot store
a pointer to the object because the original object might be delete-d just

101

after the insertion. Removing the first element of a list and storing it in a
variable again involves a copy operation; worse, any object returned by a
function needs to be copied, as we explain using the example in Figure 40. A
is some class with a copy constructor and a constructor taking no argument;
the function main calls func, reserving space for the return value on the

A func()

{

A a1, a2;

// some computation

if (condition)

return a1;

else

return a2

}

main()

{

A result;

result = func().do_something();

}

Figure 40: Example of redundant copy operations.

stack. After func is entered, the constructor taking no argument is called
for the objects a1 and a2, with memory allocated on the stack frame of
func. At each of the return statements, the copy constructor is called with
a1 or a2 as parameter to create an object in the area reserved for the return
value. This copy operation could be avoided if it were clear at the entry of
func which object would be returned; in Pascal, for example, the implicit
return variable gets the name of the function and so the problem is avoided.
A sophisticated C++ optimizer might be able to save most copy-constructor
calls, yet the casual C++ programmer is probably not aware of this problem
and the compilers we checked (GNU and Sun) did not optimize it away.

Pipelining

Pipelining is a programming technique to avoid storing intermediate results,
to compute results “just in time,” and to parallelize producers and consumers
of data. To that end, subroutines that normally return list data structures
are converted to compute the elements of the list one by one. The caller does

102

list<characteristic> combine(...)

{

loop_state i;

for (init(i); valid(i); next(i)) {

// construction of a candidate of a characteristic

if (found_characteristic) {

full_set.insert(new_characteristic);

}

}

return full_set;

}

Figure 41: A C++ function with a loop computing a set of full characteristics.

characteristic next_combination(loop_state &i, ...)

{

if (!initialized) {

init(i);

}

goto inside;

for (; valid(i); next(i)) {

// construction of a candidate of a characteristic

if (found_characteristic) {

return new_characteristic;

}

inside:

;

}

// all characteristics have been returned

return no_more_characteristics;

}

Figure 42: A construct for pipelining the loop in Figure 41. Each invocation
of this function returns one new characteristic or states that there are no
further characteristics.

103

not enumerate the elements of the list, but requests further elements from the
subroutine, so that the list is never completely instantiated. Moreover, only
the elements of the list that are needed by the caller are actually computed; in
parallelized setting, the caller and the subroutine can work concurrently, i.e.,
while the caller processes one element of the list, the subroutine can already
produce the next. Pipelining is used on many levels of computing, such
as in arithmetic circuits of microprocessors [PH90] and in database systems
[SKS97].

Converting source code to take advantage of pipelining requires some un-
clean workarounds in C++. Namely, converting a loop as in Figure 41 with
(possibly large) procedures init, valid and next necessitates a construct
like that of Figure 42 where the variables initialized and i must be con-
served across subsequent requests for the next characteristic. The goto can
be avoided by turning the for loop into a do {. . . } while-loop, however,
the problem of maintaining the state of the loop counter i remains and gets
much worse for nested loops. It is possible to use multithreading in C++, but
the language lacks coroutines [Mar80], which would allow an implementation
of pipelining that is both clean and efficient.

An Alternative

After investigating several programming languages, we found that the Eiffel
programming language [Mey92] remedied all the problems we encountered
in programming C++. It has a powerful object system with multiple and
repeated inheritance, exception handling, generic classes (corresponding to
templates in C++), and garbage collection. Among its unique features is the
support for “Programming by Contract,” where preconditions and postcon-
ditions of functions and class invariants are specified within the language,
allowing them to be inherited by functions in derived classes and extracted
by automatic documentation tools. The term “Programming by Contract”
stems from the interpretation that when object A invokes method m of object
B, A guarantees that the parameters satisfy the preconditions of m and B is
committed to ensure that the postcondition of m will be met and the class
invariant of B is preserved. Moreover, Eiffel requires global program anal-
ysis to ensure correctness, which has the useful byproduct that all current
Eiffel compilers support incremental compilation; hence recompilation times
remain in relation to the changes made. Finally, Eiffel does not have corou-
tines, but a language extension for an object-oriented equivalent of coroutines
has been proposed by Meyer [Mey97].

When we came to the conclusion that in C++, we could not improve
memory-management while maintaining the readability and extendibility of

104

the source code, we made an effort to port the path-decomposition algorithm
to Eiffel, but due to time constraints, this project was eventually suspended—
the lack of a data structure library like LEDA could not be compensated for
by a one-man effort.

105

Appendix A

Notes on the Software

We pursued several lines of development. In Section A.1 we describe our tools
for graph generation, which draw on the techniques presented in Section 5.1.
Using the C++ language and the LEDA library [MNSU98], we implemented
the [ACP87] tree-decomposition algorithm, the generic tree-automaton tech-
nique for solving problems on graphs of bounded treewidth, and as instances
of the latter, algorithms for Coloring and computing path decompositions.
Implementation notes on these programs are given in Section A.2. The source
code, some 12,000 lines of code, is included on electronic media with all offi-
cial copies; it is available as well on the Internet at

http://www.mpi-sb.mpg.de/~roehrig/dipl

The unfinished port to the Eiffel programming language (3,500 lines of code)
is available on request.

A.1 Graph Utilities

We needed utilities to generate and manipulate a large number of graphs in
a scriptable environment. For this purpose, we created the “grut” package of
command line graph utilities. To ensure interoperability with the “graphlet”
interactive graph editor [Him96] and LEDA, we chose the GML file format
[Him97] to store graphs. All programs in the grut package fulfill a narrow
purpose, such as outputting a random tree or annotating a graph with a
layout; they take their parameters from the command line, read input from
the standard input and write output to the standard output. As an extension
to GML, they all maintain a log of changes made to a graph, so that the
genesis of test cases can always be determined. We reproduce here the README
file from the source code.

106

From: Hein Roehrig <hein@acm.org>
Time-stamp: "1998-09-23 11:20:29 roehrig"

COPYRIGHT

grut - GRaph UTilities
Copyright (C) 1998 Hein Roehrig

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA

INTRODUCTION

This is a snapshot of the C++ and Perl command line graph utilities
developed for my master’s thesis. The underlying simple graph format
is GML, as described in

http://www.fmi.uni-passau.de/
archive/archive.theory/ftp/graphlet/GML.ps.gz

As an extension to GML, the utilities maintain a history of the
changes made to graph.

INSTALLATION

- Prequisites: GNU make, gcc 2.8 or egcs, perl 5. Optionally autoconf,
automake and libtool. LEDA is not used.

- in the following, the directory of this file will be referred to as
$srcdir.

- make a separate compilation directory, now referred to as $compdir

- configure the package

107

cd $compdir
$srcdir/configure --disable-shared

If you want to use a different C/C++ compiler, do the following:

CC=/opt/egcs-1.0.1/bin/gcc CXX=/opt/egcs-1.0.1/bin/c++
$srcdir/configure --disable-shared

- cd $compdir; make

for debugging :
make CXXFLAGS="-pipe -g -Wall"

for profiling:
make CXXFLAGS="-pipe -O -fno-inline -DNDEBUG -pg -Wall"

for production:
make CXXFLAGS="-pipe -O3 -DNDEBUG -Wall"

RUNNING

All programs take their input from stdin and write the output to
stdout. Errors and other messages are sent to stderr. The programs
take a "-v" switch to increase verboseness, and those using random
numbers take a "-S integer" switch to define the seed. Other options
depend on the program and are given by running the program with the
"--help" flag (you are invited to have a look at the source code as
well).

Generation:
makepath generate a path of given length
makecactus generate a cactus of given size
rtree generate random trees

Modification:
tree2ktree generate a k-tree from a tree at random
thinout randomly delete edges
permute randomly permute nodes
id2label set the node labels to the node ids
label2id set the node ids from the node labels

Layout:
layout3d 3D spring embedder
gml2vrml convert a GML graph with 3D layout to VRML

Other:
graphstat give statistics of a graph

108

A.2 Tree Decomposition and Path Decomposition

All C++ software for computing and verifying tree decompositions and path
decompositions is contained in the “tdecomp” package. An overview of the
distribution and installation instructions are contained in the README file,
which follows.

From: Hein Roehrig <hein@acm.org>
Time-stamp: "1998-09-23 11:21:37 roehrig"

COPYRIGHT

tdecomp - Programs for Tree and Path Decomposition
Copyright (C) 1998 Hein Roehrig

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA

INTRODUCTION

This is a snapshot of the C++ tree decomposition and path
decomposition programs developed for my master’s thesis. At some point
during development, I came to the conclusion that using C++ was not a
good idea since it has serious deficiencies such as missing garbage
collection. Unfortunately, I did not get around to re-implement
everything in Eiffel; however, the present code proves rather well
that the Bodlaender-Kloks algorithm is impractical.

If you would like to look at the source, the interesting parts are in
the following files:

tautomat.h contains the generic algorithm for solving problems using a
tree decomposition.

iseq.h, iseq.cc contain the code dealing with T-sequences.

109

pdc.h contains the combination algorithms for path decomposition

coloring.cc contains the combination algorithms for k-COLORING.

tdecomp1.cc contains the the n^(k+2) tree decomposition algorithm by
Arnborg, Corneil and Proskurowski.

The primary benchmarking tools are

pdcpathG: scheduler for series of benchmarks

cfman: configuration manager for executing the same test suite on
multiple variations of the same algorithm

ppac: measures the resource usage (elapsed wall clock time, CPU
cycles, memory consumption)

INSTALLATION

- Prequisites: GNU make, LEDA 3.7, gcc 2.8 or egcs. Optionally: perl
5, autoconf, automake and my grut graph utilities. The sources can
be back-ported to LEDA 3.5 and 3.6 without much work; however,
earlier versions of gcc and most other C++ compilers don’t do
because they do not support features like member templates. Note
also that Quantify up to version 4.2 does not work with gcc 2.8 (I
had to learn it the hard way...).

- in the following, the directory of this file will be referred to as
$srcdir. The location of LEDA will be referred to as $ledadir.

- make a separate compilation directory, now referred as $compdir

- configure the package

cd $compdir
$srcdir/configure --with-leda=$ledadir

if LEDA is installed in $ledadir/include and $ledadir/lib, or

$srcdir/configure --with-leda-include=/LEDA/INSTALL/incl
--with-leda-lib=/LEDA/INSTALL/solaris/g++/lib

If you want to use a different C/C++ compiler, do the following:

CC=/opt/egcs-1.0.1/bin/gcc CXX=/opt/egcs-1.0.1/bin/c++
$srcdir/configure --with-leda=$ledadir

- cd $compdir; make

for debugging :
make CXXFLAGS="-pipe -g -Wall -Wno-reorder"

110

for profiling:
make CXXFLAGS="-pipe -O -fno-inline -DNDEBUG

-DLEDA_CHECKING_OFF -pg -Wall -Wno-reorder"

for production:
make CXXFLAGS="-pipe -O3 -DNDEBUG

-DLEDA_CHECKING_OFF -Wall -Wno-reorder"

- optionally (may need huge amounts of memory/time):

make check

RUNNING

- Note: numbers referring to vertices in the output are the values
from the GML "id" field.

- At the beginning of the individual source files, debugging and other
options can be set via preprocessor directives

- For running the programs, the LD_LIBRARY_PATH variable probably
needs to point to the location of the LEDA DLLs. For the test and
benchmark scripts, you should also set TIMECMD and srcdir. Of
course, all shell variables need to be exported to the environment.

- All programs dump core on errors and on ^C. Therefore you should
consider to set ulimit -c0 to switch off core dumps.

- All programs write their output to stdout and diagnostic messages to
stderr. All programs take the "-v" switch to increase verboseness.

- The tdecomp and the pdecomp programs either compute or verify tree
decompositions/path decompositions. Verify mode is specified with
the "-V" switch; without this switch, computation mode is selected.
For computation and optionally for verification, a "-k integer"
switch can be given to indicate the required width of the
decomposition.

tdecomp -vk2 graph1.gml > graph1-tdc.gml

computes a tree decomposition of width 2 of graph 1, with lots of
information during the computation, and with the output tree
decomposition written to graph1-tdc.gml.

pdecomp -vk3 graph1.gml graph1-tdc.gml > graph1-pdc.gml

computes a width 3 path decomposition of graph1.gml using the tree
decomposition graph1-tdc.gml, and write the output to
graph1-pdc.gml.

111

tdecomp -vVk2 graph1.gml graph1-tdc.gml

verbosely verifies the tree decomposition, and

pdecomp -vVk3 graph1.gml graph1-pdc.gml

verifies the path decomposition.

- The coloring program works similarly, except that the output
consists of a coloring and the -k parameter indicates the number of
permitted colors.

- The file format for tree decompositions is as follows: The tree is
written out as a GML graph, and nodes of the tree have a GML keyword
"bag" of type "list", in which the graph vertices in the bag of that
tree node are given. E.g.

graph [
directed 0
node [id 0 bag [node 7 node 100]]
node [id 1 bag [node 4 node 7]]
node [id 2 bag [node 4]]
edge [source 0 target 1]
edge [source 1 target 2]

]

would be a (width 1) tree decomposition of graph

graph [
directed 0
node [id 4]
node [id 7]
node [id 100]
edge [source 4 target 7]
edge [source 7 target 100]

]

- For benchmarking, perl and grut are needed. The test cases are
generated using make* scripts and executed using the corresponding
pdc* scripts. If you are reading this not much later than summer
1998, beware that the dimensions of the test cases are chosen to go
to the limit of the largest machine I had access to.

GRAPHS

test cases for tree decomposition verification
--
g000.gml t000.gml
g001.gml t001.gml
g002.gml t002.gml

112

test cases for tree decomposition computation

g003.gml t003.gml
g004.gml t004.gml
g005.gml t005.gml
g006.gml t006.gml
g007.gml t007.gml
g008.gml t008.gml
g009.gml t009.gml
g010.gml t010.gml
g019.gml t019.gml

test cases for coloring (tree automaton)
--
g003.gml t003.gml
g011.gml t011.gml
g011.gml t012.gml

test cases for path decomposition

g013.gml t013.gml handcrafted, 6 nodes, pathwidth 2
g016.gml t016.gml from path20, width 2, not thinned out
g020.gml t020.gml pathwidth 3, treewidth 3, 11 nodes
g022.gml t022.gml tree of 5 nodes in Y form
g023.gml t023.gml cycle of 5 nodes with two "dangling" nodes
g025.gml t025.gml based on g016.gml, with 1/4 of the edges removed
g026.gml t026.gml graph consisting of 4 stacked triangles, tw 2, pw 3
g032.gml t032.gml test case for single split error in computing results
g038.gml t038.gml for profiling, path 128, width 2, 25% deleted

misc graphs

g015.gml t015.gml generated, treewidth 4

113

Bibliography

[ACP87] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of
finding embeddings in a k-tree. SIAM Journal on Algebraic and
Discrete Methods, 8:277–284, 1987.

[AP86] S. Arnborg and A. Proskurowski. Characterization and recogni-
tion of partial 3-trees. SIAM Journal on Algebraic and Discrete
Methods, 7:305–314, 1986.

[BH98] H. L. Bodlaender and T. Hagerup. Parallel algorithms with opti-
mal speedup for bounded treewidth. SIAM Journal on Comput-
ing, 27(6):1725–1746, 1998.

[BK96] H. L. Bodlaender and T. Kloks. Efficient and constructive al-
gorithms for the pathwidth and treewidth of graphs. Journal of
Algorithms, 21(2):358–402, 1996.

[Bod93] H. L. Bodlaender. A tourist guide through treewidth. Acta Cy-
bernetica, 11:1–21, 1993.

[Bod96a] H. L. Bodlaender. A linear-time algorithm for finding tree-
decompositions of small treewidth. SIAM Journal on Computing,
25(6):1305–1317, 1996.

[Bod96b] H. L. Bodlaender. A partial k-arboretum of graphs with bounded
treewidth. Technical Report UU-CS-1996-02, Department of
Computer Science, Utrecht University, 1996.

[Bod97] H. L. Bodlaender. Treewidth: Algorithmic techniques and re-
sults. In I. Pŕıvara and P. Ružička, editors, Proceedings of the
22nd International Symposium on the Mathematical Foundations
of Computer Science (MFCS’97). Springer Lecture Notes in Com-
puter Science 1295, pages 29–36, 1997.

[Cha98] A. Charlesworth. Starfire: Extending the SMP envelope. IEEE
Micro, pages 39–49, January/February 1998.

114

[Cou90] B. Courcelle. The monadic second-order logic of graphs. I. Rec-
ognizable sets of finite graphs. volume 85 of Information & Com-
putation. 1990.

[DF95] R. G. Downey and M. R. Fellows. Fixed-parameter tractability
and completeness I: Basic results. SIAM Journal on Computing,
24(4):873–921, 1995.

[FL89] M. R. Fellows and M. A. Langston. On search, decision and
the efficiency of polynomial-time algorithms (extended abstract).
In Proceedings of the 21st ACM Symposium on the Theory of
Computation (STOC’89), pages 501–512, 1989.

[Hag98a] T. Hagerup. Bodlaender’s algorithm explained. private commu-
nication, 1998.

[Hag98b] T. Hagerup. Comparing integer sequences. private communica-
tion, 1998.

[Him96] M. Himsolt. The graphlet system. In S. North, editor, Graph
Drawing 96, volume 1190 of Lecture Notes in Computer Science,
pages 233–240. Springer-Verlag, Heidelberg, 1996.

[Him97] M. Himsolt. GML: A portable graph file format. Tech-
nical report, Universität Passau, 1997. http://www.fmi.uni-
passau.de/Graphlet/GML/gml-tr.html.

[Joy96] I. Joyner. A critique of C++. http://www.elj.com/cppcv3/,
1996.

[Kar72] R.M. Karp. Reducibility among combinatorial problems. In
R. E. Miller and J. W. Thatcher, editors, Complexity of Computer
Computations, pages 85–103. Plenum Press, New York, 1972.

[Klo94] T. Kloks. Treewidth. Computations and Approximations, volume
842 of Lecture Notes in Computer Science. Springer-Verlag, Hei-
delberg, 1994.

[Lag90] J. Lagergren. Efficient parallel algorithms for tree-decomposition
and related problems. In Proceedings of the 31st Symposium on
the Foundations of Computer Science (FOCS’90), pages 173–182,
St. Louis, MS, 1990. IEEE Computer Society Press.

[Mar80] C. D. Marlin. Coroutines. A Programming Methodology, a Lan-
guage Design and an Implementation, volume 95 of Lecture Notes
in Computer Science. Springer-Verlag, Heidelberg, 1980.

[Mey92] B. Meyer. Eiffel: the language. Prentice Hall object-oriented
series. Prentice Hall, Englewood Cliffs, NJ, 1992.

115

[Mey97] B. Meyer. Object-Oriented Software Construction. Prentice Hall,
Englewood Cliffs, NJ, second edition, 1997.

[Möh90] R.H. Möhring. Graph problems related to gate matrix layout
and PLA folding. In G. Tinhofer, E. Mayr, H. Noltemeier, and
M. M. Syslo, editors, Computational Graph Theory, volume 7
of Computing Supplement, pages 17–51. Springer-Verlag, Wien,
1990.

[MNSU98] K. Mehlhorn, S. Näher, M. Seel, and C. Uhrig. The LEDA
user manual: Version 3.6. Max-Planck-Institut für Informatik,
Saarbrücken, 1998.

[MT91] J. Matoušek and R. Thomas. Algorithms finding tree-decompo-
sitions of graphs. Journal of Algorithms, 12:1–22, 1991.

[NW78] A. Nijenhuis and H. S. Wilf. Combinatorial Algorithms for Com-
puters and Calculators. Computer Science and Applied Mathe-
matics, a Series of Monographs and Textbooks. Academic Press,
New York, second edition, 1978.

[PH90] D. A. Patterson and J. L. Hennessy. Computer architecture: a
quantitative approach. Morgan Kaufmann, San Mateo, 1990.

[Ree92] B. A. Reed. Finding approximate separators and computing tree
width quickly. In N. Alon, editor, Proceedings of the 24th ACM
Symposium on the Theory of Computation (STOC’92), pages
221–228. ACM Press, 1992.

[Ros74] D. J. Rose. Triangulated graphs and the elimination process.
Discrete Mathematics, 7:317–322, 1974.

[RS83] N. Robertson and P. D. Seymour. Graph minors. I. Excluding
a forest. Journal of Combinatorial Theory Series B, 35:39–61,
1983.

[RS86] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic
aspects of tree-width. Journal of Algorithms, 7:309–322, 1986.

[San96] D. P. Sanders. On linear recognition of tree-width at most four.
SIAM Journal on Discrete Mathematics, 9(1):101–117, 1996.

[SE90] B. Stroustrup and M. A. Ellis. The annotated C++ Reference
Manual. Addison-Wesley, Reading, MA, 1990.

[Sei90] H. Seidl. Deciding equivalance of finite tree automata. SIAM
Journal of Computation, 19(3):424–437, 1990.

116

[SKS97] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System
Concepts. McGraw Hill Series in Computer Science. McGraw Hill,
New York, third edition, 1997.

[Tho97] M. Thorup. Structured programs have small tree-width and good
register allocation. In R. H. Möhring, editor, Graph-theoretic con-
cepts in computer science (WG-97): 23rd international workshop,
Berlin, Germany, 1997, volume 1335 of Lecture Notes in Com-
puter Science, pages 318–332. Springer-Verlag, Heidelberg, 1997.

[Tin90] G. Tinhofer. Generating graphs uniformly at random. In G. Tin-
hofer, E. Mayr, H. Noltemeier, and M. M. Syslo, editors, Com-
putational Graph Theory, volume 7 of Computing Supplement,
pages 235–255. Springer-Verlag, Wien, 1990.

[WE85] N. H. E. Weste and K. Eshraghian. Principles of CMOS VLSI
design: a systems perspective. Addison-Wesley, Reading, MA,
1985.

[Wil81] H. S. Wilf. The uniform selection of free trees. Journal of Algo-
rithms, 2:204–207, 1981.

117

Index

Bandwidth, 31
basis (in a k-tree), 17
bridge vertex, 87

characteristic, 21–22, 24
final, 46
preliminary, 36–37

characteristic, 101
Coloring, 26
completeness, 22, 25, 47
correctness, 22, 25

fixed-parameter tractability, 12, 72
full set of characteristics, 22, 23,

25, 47, 48, 79

graph, 14
labeled, 91
unlabeled, 91

GateMatrixLayout, 30

HamiltonianCircuit, 20

IndependentSet, 6–10, 21–22, 26
induction on a tree, 23
internal vertex, 87
isomorphic, 91

k-tree, 17

leaf vertex, 86

node, 15
forget, 22
introduce, 22
join, 22

start, 22

partial k-tree, 17
partial solution, 20
path decomposition, 29, 32
Pathwidth, 26, 29
pathwidth, 29
pipelining, 27, 57, 58, 102

reduced bag sequence, 34
rewriting tree decompositions, 18,

22, 26

separators, 80

(total) k-tree, 17
tree automaton, 23–28, 57, 73, 101,

106
tree decomposition, 15–16

rooted, 16
tree node, 15
Treewidth, 18, 88
treewidth, 16
trunk, 74

degenerate, 75
T -sequences, 42–43, 58

U -sequences, 42
utilization sequence, 36, 42

vertex, 15
VLSI design, 29

W -separator, 83

118

